Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Смирнов Сергей Николаевич

Должность: врио ректора

Дата подписания: 17.11.2023 16:06:35 Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Министерство науки и высшего образования Российской Федерации ФГБОУ ВО «Тверской государственный университет»

Утверждаю:

Руководитель ООП

Никольский В.М.

27 июня 2023 г.

Рабочая программа дисциплины (с аннотацией)

Химия координационных соединений

Направление подготовки 04.04.01 Химия

Направленность (профиль)

Аналитическая химия

Для студентов 1 курса очной формы обучения

Составитель: д.х.н., профессор Никольский В.М.

I. Аннотация

1. Цель и задачи дисциплины

Целью освоения дисциплины (модуля) является обучение применению координационных соединений и закрепление понятия о том, что химия координационных соединений является специфической дисциплиной, пронизывающей и связывающей не только фундаментальную химию (неорганическая химия, органическая химия, физическая химия, электрохимия), но и другие естественно-научные дисциплины.

В задачу освоения дисциплины (модуля) входит овладение техникой и методикой изучения комплексных соединений.

2. Место дисциплины в структуре ООП

Дисциплина «Химия координационных соединений» входит в Элективные дисциплины 2 обязательной части Блока 1. «Дисциплины» учебного плана.

Она закладывает знания для научно-исследовательской практики и выполнения магистерских диссертаций. Дисциплина непосредственно связана с неорганической химией, физической химией и аналитической химией (спектрофотометрия, колориметрия и потенциометрия).

Координационные соединения получили чрезвычайно широкое распространение в аналитической химии. Их можно назвать фундаментом всей «мокрой» аналитической химии, т.е. химии, так или иначе связанной с приготовлением и использованием растворов (реагенты, определяемые вспомогательные растворы и т.д.). Без координационных соединений не могут обойтись классические методы анализа: достаточно вспомнить метод комплексонометрического титрования в объемном анализе, маскирование мешающих катионов в гравиметрии, важнейшие качественные реакции на катионы большинства металлов в качественном анализе и т.д. Образование металлокомплексов лежит в основе таких физико-химических методов, как спектрофотометрия и колориметрия. Они существенно расширяют возможности полярографии, потенциометрии и многих других Bce перечисленные достоинства химии координационных соединений определяют её особое место в подготовке квалифицированного специалиста в области аналитической химии.

3. Объем дисциплины: 6 зачетных единиц, **216** академических часа, **в том** числе:

контактная аудиторная работа: лекции **15** часов, лабораторные работы - **45** часов, в т. ч. лабораторная практическая подготовка - **45** часов;

контактная внеаудиторная работа: контроль самостоятельной работы **10** часов;

самостоятельная работа: 119 часов, контроль – 27 часов.

4. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Планируемые результаты освоения	Планируемые результаты обучения по		
образовательной программы	дисциплине		
(формируемые компетенции)			
ОПК-1 Способен выполнять	ОПК-1.1 Использует существующие и		
комплексные экспериментальные и	разрабатывает новые методики получения и		
расчетно-теоретические исследования в	характеризации веществ и материалов для		
избранной области химии или смежных	решения задач в избранной области химии или		
наук с использованием современных	смежных наук		
приборов, программного обеспечения и	ОПК-1.2 Использует современное		
баз данных профессионального	оборудование, программное обеспечение и		
назначения	профессиональные базы данных для решения		
	задач в избранной области химии или смежных		
	наук		
ОПК-2 Способен анализировать,	ОПК-2.1 Проводит критический анализ		
интерпретировать и обобщать результаты	результатов собственных экспериментальных и		
экспериментальных и расчетно-	расчетно-теоретических работ, корректно		
теоретических работ в избранной области	интерпретирует их		
химии или смежных наук	ОПК-2.2 Формулирует заключения и выводы по		
	результатам анализа литературных данных,		
	собственных экспериментальных и расчетно-		
	теоретических работ в избранной области		
	химии или смежных наук		

5. Форма промежуточной аттестации и семестр прохождения:

экзамен – 2 семестр

6. Язык преподавания русский.