Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Смирнов Сергей Николаевич

Должность: врио ректора

Дата подписания: 23.09.2022 15:19:5 Министерство образования и науки Российской Федерации

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf ФРВОУ ВО «Тверской государственный университет»

Утверждаю:

Руководитель ООП:

Рабочая программа дисциплины (с аннотацией)

ОПТИКА

27.03.05 ИННОВАТИКА

Профиль подготовки Управление инновациями (по отраслям и сферам экономики)

> Для студентов II курса очной формы обучения

Составитель: Жеренкова Л.В.

Тверь, 2016

І. Аннотация

1. Наименование дисциплины в соответствии с учебным планом

Оптика

2. Цель и задачи дисциплины

Целью освоения дисциплины является:

создание фундаментальной базы знаний, на основе которой в дальнейшем можно развивать более углубленное и детализированное изучение других разделов физики и специализированных курсов.

Задачами освоения дисциплины являются:

- изучение основных явлений и законов оптики, границ их применимости;
- установление связи между различными физическими явлениями, вывод основных законов в виде математических уравнений;
- постановка и анализ задачи, применение различных методов решения.

3. Место дисциплины в структуре ООП

Дисциплина «Оптика» относится к модулю 2 «Дисциплины, формирующие ОПК-компетенции» базовой части учебного плана. Вырабатывает понимание взаимосвязи между оптическими явлениями и процессами, происходящими в природе, умение применять законы оптики для качественных оценок и количественного решения конкретных задач, а также дать представление о современном состоянии оптики и новых открытиях в области фотоники и оптоэлектроники.

Уровень начальной подготовки обучающегося для успешного освоения дисциплины: иметь представление об основных понятиях и законах оптики в рамках программы средней школы; знать курс общей физики и математических дисциплин в рамках программы 4-х семестров университета.

4. Объем дисциплины: 4 зачетные единицы, 144 академических часов, **в том числе контактная работа:** лекции 38 часов, практические занятия 19 часов, **самостоятельная работа:** 87 часов.

5. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемые результаты освоения образовательной	Планируемые результаты обучения по дисциплине
программы (формируемые	
компетенции)	
ОПК 7:	Знать: основные законы и формулы, типичные алгоритмы
способность применять	решения задач
знания математики, физики	Уметь: решать типичные задачи на основе воспроизведения
и естествознания, химии и	стандартных алгоритмов решения
материаловедения, теории	
и материаловедения и	
информационные	
технологии в	
инновационной	
деятельности.	

- 6. Форма промежуточной аттестации экзамен (4 семестр).
- 7. Язык преподавания русский.

П. Содержание дисциплины, структурированное по темам с указанием отведенного на них количества академических часов и видов учебных занятий

1. Для студентов очной формы обучения

Учебная программа -	Всего	Контактная работа		Самосто-
наименование разделов и тем	(час.)	(час	(час.)	
_		Лекции	Практ.	работа
			занятия	(час.)
Введение	1	1		
Основные свойства	11	3	2	6
электромагнитных волн				
Распространение электромагнитных	9	2	1	6
волн в однородных изотропных				
диэлектриках				
Интерференция света	14	6	3	5
Дифракция света	10	4	2	4
Дифракция на периодических	6	2	1	3
структурах				
Разложение излучения в спектр	6	2	1	3
и основные характеристики				
спектральных приборов				
Разрешающая способность	7	2	1	4
оптических приборов				
Оптическая голография	6	2	1	3
Распространение света в	6	2	1	3
анизотропных средах				
Молекулярная оптика	7	3	1	3
Тепловое излучение	9	4	2	3
Лазеры и нелинейная оптика	9	3	2	4
Фотоэлектрический эффект	7	2	1	4
Экзамен	36			36
Итого	144	38	19	87

Ш. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

- планы практических (семинарских) занятий.
- сборники задач.
- методические рекомендации по организации самостоятельной работы студентов.
- требования к рейтинг-контролю

IV. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Форма проведения экзамена: студенты, освоившие программу курса «Оптика» могут получить оценку по итогам семестровой и полусеместровой рейтинговой аттестации согласно Положения о рейтинговой системе обучения и оценки качества учебной работы студентов ТвГУ (протокол №5 от 31 октября 2017 г.). Если условия «Положения о рейтинговой системе ...» не выполнены, то зачет сдается согласно Положения о промежуточной аттестации (экзаменах и зачетах) студентов ТвГУ (протокол №5 от 31 октября 2017 г.).

1. Типовые контрольные задания для проверки уровня сформированности компетенции ОПК 7: способность применять знания математики, физики и естествознания, химии и материаловедения, теории и материаловедения и информационные технологии в инновационной деятельности.

Этап формирования компетенции, в котором участвует дисциплина	Типовые контрольные задания для оценки знаний, умений, навыков	Показатели и критерии оценивания компетенции, шкала оценивания		
промежуточный	Задания для проверки сформированности умений:	Высокий уровень (3 балла по каждому критерию)	Средний уровень (2 балла по каждому критерию)	Низкий уровень (1 балл по каждому критерию)
	1. Решить задачу: Естественный луч света падает на поверхность стеклянной пластинки, погруженной в жидкость. Показатель преломления стекла равен 1.5. Отраженный от пластинки луч образует угол 97° с падающим лучом. Определить показатель преломления жидкости, если отраженный луч поляризован.	Понимает физику явления, указанного в условии задачи. Знает закон преломления и закон Брюстера и уверенно применяет их, записывая необходимые соотношения. Получает решение.	Понимает физику явления, указанного в условии задачи. Знает закон преломления и закон Брюстера. Неуверенно применяет их, записывая необходимые соотношения. Получает решение.	Понимает физику явления, указанного в условии задачи. Знает закон преломления и закон Брюстера. С трудом применяет их, записывая необходимые соотношения.
	Решите задачу: От двух когерентных источников света получена система интерференционных полос на экране, удаленном от источников на расстояние $a=2$ м. Во сколько раз изменится ширина интерференционных полос, если между источниками и экраном поместить собирающую линзу с фокусным расстоянием $F=25$ см. Рассмотреть два случая: 1) расстояние линзы от источников равно $2F=50$ см; 2) источники находятся в фокальной плоскости линзы.	Понимает физику явления. Записывает формулы тонкой линзы и ширины интерференц ионной полосы. Правильно рисует оптические схемы. Решает уравнения, записывая правильный ответ.	Понимает физику явления. Записывает формулы тонкой линзы и ширины интерференц ионной полосы. Неуверенно рисует оптические схемы. Неуверенно решает уравнения.	Понимает физику явления. Записывает формулы тонкой линзы и ширины интерференци онной полосы. С трудом рисует оптические схемы. Неуверенно решает уравнения.
	Задания для проверки сформированности знаний: Знать основные положения теории	Высокий уровень (3 балла по каждому критерию) Знает	Средний уровень (2 балла по каждому критерию)	Низкий уровень (1 балл по каждому критерию) Знает
	интерференции.	основные понятия теории. Записывает формулы для результирую щей интенсивност и при двухлучевой и	основные понятия теории. Неуверенно записывает формулы для результирую щей интенсивност и при двухлучевой	основные понятия теории. С трудом записывает формулу для результирующей интенсивности при двухлучевой

Знать классическую теорию дифракционной решетки (ДР).	многолучевой интерференц ии, формулу для ширины интерференц ионной полосы. Не допускает ошибок. Знает принцип Гюйгенса-Френеля, основное уравнение ДР, формулу для результирую щей интенсивност и и основные спектральные характеристи	и многолучево й интерференц ии, формулу для ширины интерференц ионной полосы. Допускает несуществен ные математическ ие ошибки. Знает принцип Гюйгенса-Френеля и основное уравнение ДР. С трудом записывает формулу для результирую щей интенсивност и и называет не все	интерференци и. Знает принцип Гюйгенса-Френеля, основное уравнение ДР. Называет хотя бы одну спектральную характеристик у ДР.
	и и основные спектральные	интенсивност и и называет	
	характеристи ки ДР.	не все основные спектральные характеристи ки ДР.	

V. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

а) Основная литература:

- 1. Акиньшин В. С. Оптика: учебное пособие. СПб. : Лань, 2015. Режим доступа: http://e.lanbook.com/book/56605
- 2. Маскевич А. А. Оптика: чебное пособие . М.: НИЦ Инфра-М, 2012.- Режим доступа: //znanium.com/go.php?id=306513#none
- 3. Калитеевский Н. И. Волновая оптика: учебное. СПб. : Лань, 2008.-Режим доступа: http://e.lanbook.com/book/173

б) Дополнительная литература:

1. Бутиков Е. И. Оптика: учебное пособие. — СПб.: Лань, 2012.-

Режим доступа: http://e.lanbook.com/book/2764

2. Ахманов С.А. Статистическая радиофизика и оптика. Случайные колебания и волны в линейных системах . - М.: Физматлит, 2010. - [Электронный ресурс]. — Режим доступа: http://biblioclub.ru/index.php?page=book&id=67715

VI. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1. Электронная библиотека издательства Лань: http://e.lanbook.com/
- 2. Университетская библиотека ONLINE: http://www.biblioclub.ru/
- 3. Сайт издательского дома ЮРАЙТ: http://www.biblio-online.ru/
- 4. Сервер информационно-методического обеспечения учебного процесса ТвГУ edc.tversu.ru

VII. Методические указания для обучающихся по освоению дисциплины

– планы практических (семинарских) занятий:

Семинар 1: Решение задач на тему «Законы геометрической оптики». Примеры задач:

- 1. Определить, насколько плоскопараллельная стеклянная пластинка толщины d=10 см смещает в сторону луч света, падающий на нее под углом $\varphi=70^{0}$. Показатель преломления стекла n=1.5.
- 2. Собирающая линза дает изображение некоторого предмета на экране. Высота изображения равна H_1 . Оставляя неподвижными экран и предмет, начинают двигать линзу к экрану и находят, что при втором четком изображении предмета высота изображения равна H_2 .
- 3. Матовое стекло фотоаппарата установлено так, что резким выходит изображение предмета, находящегося на расстоянии 5 м. До какого диаметра D нужно задиафрагмировать объектив с фокусным расстоянием 20 см, чтобы не была заметной нерезкость в изображении предметов, находящихся на 0.5 м ближе снимаемого (нерезкость считать незаметной, если размытость деталей не превышает 0.1 мм)?

Семинар 2: Решение задач на тему «Оптические приборы». Примеры задач:

- 1. Вывести формулу для увеличения микроскопа с фокусными расстояниями объектива $F_{\rm OE}$ и окуляра $F_{\rm OK}$ и длиной тубуса Δ . Расстояние наилучшего зрения D=25 см.
- 2. Оптические силы объектива и окуляра микроскопа равны 100 и 20 дптр. Увеличение микроскопа равно 50. Каково будет увеличение этого микроскопа, если расстояние между объективом и окулярном увеличить на 2.0 см?
- 3. Фокусное расстояние объектива трубы Галилея $F_1 = 45$ см, окуляра $F_2 = 5$ см. При замене линз в трубе на две положительные получилась труба Кеплера с тем же увеличением, что и труба Галилея. Найти фокусные расстояния двух собирающих линз.

Семинар 3: Решение задач на тему «Плоскополяризованный свет. Формулы Френеля». Примеры задач:

- 1. Определить угол полной поляризации, если свет падает из воды (показатель преломления 1.33) в стекло (1.6). Как поляризован падающий луч, если в этом случае отраженные лучи отсутствуют?
- 2. Естественный луч света падает на поверхность стеклянной пластинки, погруженной в жидкость. Показатель преломления стекла равен 1.5. Отраженный от пластинки луч образует угол 97 с падающим лучом. Определить показатель преломления жидкости, если отраженный луч поляризован.
- 3. Один поляроид пропускает 30% света, если на него падает естественный свет. После прохождения света через 2 поляроида интенсивность падает до 9%. Найти угол между осями поляроидов.
- **4.** Луч света последовательно проходит через 2 николя, плоскости пропускания которых образуют угол 40 . Принимая, что коэффициент поглощения каждого николя равен 0.2, найти, во сколько раз луч, выходящий из второго николя, ослаблен по сравнению с лучом, падающим на первый николь. Свет естественный.

Семинар 4: Решение задач на тему «Интерференция». Примеры задач:

1. Направления распространения двух плоских волн одной и той же длины λ составляют друг с другом малый угол φ . Волны падают на экран, плоскость которого приблизительно перпендикулярна к направлению их распространения. Написав уравнения обеих плоских волн и сложив поля этих волн, показать, что расстояние Δx между двумя соседними интерференционными полосами на экране определяется выражением $\Delta x = \lambda/\varphi$

.

- **2.** Ширина интерференционной полосы $\Delta x = 1$ мм. Расстояние от линии соединения зеркал Френеля до источника r = 10см, до экрана a = 1м. $\lambda = 4861$ А. Найти угол между зеркалами α .
- **3.** От двух когерентных источников света получена система интерференционных полос на экране, удаленном от источников на расстояние a=2 м. Во сколько раз изменится ширина интерференционных полос, если между источниками и экраном поместить собирающую линзу с фокусным расстоянием F=25см. Рассмотреть два случая: 1) расстояние линзы от источников равно 2F=50 см; 2) источники находятся в фокальной плоскости линзы.
- **4.** Из линзы с фокусным расстоянием F = 50 см вырезана центральная часть ширины a. Обе половины линзы сдвинуты до соприкосновения. По одну сторону линзы помещен точечный источник монохроматического света ($\lambda = 6000$ A). С противоположной стороны линзы помещен экран, на котором наблюдаются полосы интерференции. Расстояние между соседними светлыми полосами $\Delta x = 0.5$ мм и не изменяется при перемещении экрана вдоль оптической оси. Найти a.
- **5.** В очень тонкой клиновидной пластинке в отраженном свете при нормальном падении наблюдаются интерференционные полосы. Расстояние между соседними темными полосами $\Delta x = 5$ мм. Зная, что длина световой волны равна $\lambda = 5800$ A, а показатель преломления пластинки n = 1.5, найти угол α между гранями пластинки.
- **6.** Кольца Ньютона получаются между двумя плосковыпуклыми линзами, прижатыми друг к другу своими выпуклыми поверхностями. Найти радиус m-го темного кольца, если длина световой волны равна λ , а радиусы кривизны выпуклых поверхностей линз равны R_1 и R_2 . Наблюдение ведется в отраженном свете.

Семинар 5: Решение задач на тему «Дифракция света». Примеры задач:

- 1. Вычислить радиус m-й зоны Френеля, если расстояние от источника до зонной пластинки равно a, а расстояние от пластинки до места наблюдения равно b. Длина волны λ . Вычислить радиус m-й зоны Френеля при условии, что на зонную пластинку падает плоская волна.
- 2. Найти угловое распределение интенсивности света при фраунгоферовой дифракции на решетке из N щелей и с периодом d при условии, что световые лучи падают на решетку нормально, а ширина щели равна b.
- 3. Дифракционная решетка имеет 1000 штрихов. Сколько штрихов должна иметь решетка, чтобы угловая ширина главного максимума уменьшилась в два раза?
- 4. Подсчитать минимальное число штрихов решетки, которая может разрешить натриевый дублет ($\lambda_1 = 5890 \text{ A}$, $\lambda_2 = 5896 \text{ A}$) в спектре первого порядка.
- 5. Каково должно быть фокусное расстояние f_2 окуляра микроскопа, чтобы была полностью использована разрешающая способность объектива? Числовая апертура объектива равна $n\sin\alpha$, фокусное расстояние объектива f_1 , длина тубуса (трубы микроскопа) L. Длину тубуса можно считать равной расстоянию между объективом и плоскостью первого изображения (т.е. изображения, даваемого объективом).

Семинар 6: Решение задач на тему «Элементы кристаллооптики. Эллиптически поляризованный свет». Примеры задач:

- 1. Смесь света, поляризованного по кругу, и естественного рассматривается через пластинку в λ 4 и николь. При вращении николя вокруг оси светового пучка найдено, что I_{max} света, прошедшего через систему, в 3 раза превосходит I_{min} . Найти отношение интенсивности света, поляризованного по кругу, к интенсивности естественного света.
- 2. Показатель преломления кристаллического кварца для длины волны $\lambda = 589$ нм равен $n_o = 1.544$ для обыкновенного луча и $n_e = 1.553$ для необыкновенного луча. На пластинку из кварца, вырезанную параллельно оптической оси, нормально падает линейно поляризованный свет указанной длины волны, занимающий спектральный интервал $\Delta \lambda =$

- 40 нм. Найти толщину пластинки d и направление поляризации падающего света, если свет после пластинки оказался неполяризованным.
- 3. Параллельный пучок неполяризованного монохроматического света падает на пластинку в $\lambda/2$. Интенсивность света в некоторой точке наблюдения P за пластинкой равна I_0 . Из пластинки вырезают диск, закрывающий полторы зоны Френеля для точки P. Диск повернули вокруг луча на угол 90^0 и поставили на место. Какой стала интенсивность I в точке P?

Семинар 7: Решение задач на тему «Дисперсия света. Поглощение и рассеяние света». Примеры задач:

- 1. Показатель преломления ионосферы для радиоволн с частотой v=10 МГц равен n=0.9. Найти концентрацию N электронов в ионосфере, а также фазовую v_{ϕ} и групповую $v_{\varepsilon p}$ скорости для этих радиоволн.
- 2. При прохождении в некотором веществе пути l интенсивность света l уменьшается в 2 раза. Во сколько раз уменьшится интенсивность при прохождении в этом же веществе пути 3l?
- 3. Во сколько раз интенсивность молекулярного рассеяния синего света ($\lambda = 460$ нм) превосходит интенсивность рассеяния красного света ($\lambda = 650$ нм)?
- 4. Найти частоту собственных колебаний ν молекулы брома, дающей при комбинационном рассеянии линии $\lambda = 3131.6$ Å спутник с длиной волны $\lambda = 3164.0$ Å.

Семинар 8: Решение задач на тему «Законы теплового излучения». Примеры задач:

- 1. Имеется два абсолютно черных источника теплового излучения. Температура одного из них $T_1=2500\,$ К. Найти температуру другого источника, если длина волны, отвечающая максимуму его испускательной способности, на $\Delta\lambda=500\,$ мкм больше длины волны, соответствующей максимуму испускательной способности первого источника.
- 2. Найти температуру полностью ионизованной водородной плазмы плотностью $\rho = 0.10$ г/см³, при которой давление теплового излучения равно газокинетическому давлению частиц плазмы. Иметь в виду, что давление теплового излучения p = u/3, где u объемная плотность энергии излучения, и что при высоких температурах вещества подчиняются уравнению состояния идеальных газов.

– сборники задач:

- 1. Сборник задач по общему курсу физики. Ч.2 Электричество и магнетизм. Оптика. /Под ред. В.А. Овчинкина. М.: МФТИ, 2009.-475 с.
- 2. Савельев И.В. Сборник вопросов и задач по общей физике. СПб.: Лань, 2005.-288с.
- 3. Иродов И.Е. Задачи по общей физике. М.: Бином, 2001. 432c.
- 4. Сборник задач по общему курсу физики. В 5 т. Кн. IV. Оптика / Под ред. Д. В. Сивухина. М.: ФИЗМАТЛИТ; ЛАНЬ, 2006. 272 с.

- методические рекомендации по организации самостоятельной работы студентов:

- 1. Изучить рекомендуемую литературу.
- 2. Просмотреть задачи, разобранные на аудиторных занятиях.
- 3. Разобрать задачи, рекомендованные преподавателем для самостоятельного решения, используя, при необходимости, примеры решения аналогичных задач.
- 4. Обсудить проблемы, возникшие при решении задач с преподавателем.

Требования к рейтинг-контролю. В течение семестра два раза (на модульных неделях) необходимо:

- 1) сдать преподавателю решения домашних задач, полученных из указанных сборников задач,
- 2) ответить на теоретические вопросы. Примеры вопросов:

- 1.Сформулировать основные законы геометрической оптики.
- 2.В чем заключается явление полного внутреннего отражения?
- 3. Записать систему уравнений Максвелла.
- 4.Написать основные соотношения между векторами напряженностей плоской электромагнитной волны и волновым вектором.
- 5. Написать уравнение плоской монохроматической волны, которая распространяется в направлении, определяемом волновым вектором.
- 6. Какова связь между абсолютными значениями векторов напряженностей электрического и магнитного полей в плоской волне.
- 7. Какой физический смысл показателя преломления среды? Как он связан с диэлектрической и магнитной проницаемостями?
- 8. Написать граничные условия для тангенциальных составляющих векторов напряженностей электрического и магнитного полей.
- 9.Получить амплитудные соотношения при нормальном падении электромагнитной волны на границу раздела двух диэлектриков.
- 10. Написать выражение для вектора Умова-Пойнтинга и пояснить его физический смысл.
- 11. Дать определение интенсивности света. Как интенсивность связана с амплитудой волны?
- 12. Как связаны между собой фазовая и групповая скорости? Пояснить смысл введения групповой скорости.
- 13. Написать формулы Френеля для амплитуд отраженного света.
- 14. Проанализировать фазовые соотношения для отраженного и преломленного света на основе формул Френеля.
- 15. Дать определения коэффициентов отражения и пропускания света. Получить их выражения для случая нормального падения электромагнитной волны на границу раздела двух диэлектриков.
- 16. Что такое когерентность волн?
- 17. В чем заключается явление интерференции световых лучей?
- 18. Что такое время когерентности? Как длина когерентности связана со временем когерентности?
- 19. Что такое оптическая длина пути?
- 20. Какому условию должна удовлетворять разность хода между интерферирующими лучами для наблюдения в заданной точке максимума (минимума) интенсивности?
- 21. Опишите схемы для реализации интерференции в оптике.
- 22. В каком случае в результате интерференции на экране образуются полосы, а в какой кольца?
- 23. Что такое полосы равной толщины и равного наклона?
- 24. Почему центр колец Ньютона, наблюдаемых в отраженном свете, темный?
- 25. Сформулируйте принцип Гюйгенса-Френеля.
- 26. Что называется дифракцией Френеля и дифракцией Фраунгофера?
- 27. Какова интенсивность света I в фокусе зонной пластинки, если закрыты все зоны, кроме первой? Интенсивность света без пластинки равна I_0 .
- 28. Получить уравнение дифракционной решетки.
- 29. Как изменится дифракционная картина от дифракционной решетки, если ее щели перекрыть через одну?
- 30. Что такое фазовая и амплитудная дифракционные решетки?
- 31. Что такое синусоидальная дифракционная решетка?
- 32. Что такое разрешающая способность оптических приборов?
- 33. Сформулировать критерий Рэлея для разрешающей способности дифракционной решетки.
- 34. Оценить разрешающую способность человеческого глаза.
- 35. Как улучшить разрешающую способность микроскопа?
- 36. Назвать основные характеристики спектральных приборов.
- 37. Как отличить свет с круговой поляризацией от неполяризованного света?

- 38. Как отличить частично-поляризованный свет, от света с эллиптической поляризацией?
- 39. Что такое фазовые пластинки $\lambda/2$ и $\lambda/4$?
- 40. В чем экспериментальная трудность изучения аномальной дисперсии?
- 41. Что такое оптическая активность?
- 42. Каким образом угол поворота плоскости поляризации в эффекте Фарадея зависит от величины внешнего магнитного поля?
- 43. Может показатель преломления быть меньше единицы?
- 44. Как связаны между собой поглощательная и излучательная способности тела?
- 45. Получить формулу смещения Вина из формулы Планка.

VIII. Перечень педагогических и информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

- 1. Microsoft Office 365 pro plus
- 2. Microsoft Windows 10 Enterprize
- 3. Google Chrome

IX. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

образовательно	образовательного процесса по дисциплине				
Лекционная	1 Микшерный пульт Yamaha MG-	Google Chrome – бесплатно			
аудитория №	124C	Kaspersky Endpoint Security 10 для			
226 (170002	2 Аудиокомплект (мик. пульт,	Windows – Акт на передачу прав			
Тверская обл.,	акуст. усилитель, акуст. система,	№2129 от 25 октября 2016 г.			
г. Тверь,	радиосистема)	MS Office 365 pro plus - Акт			
Садовый пер.,	3 Интерактивная система SMART	приема-передачи № 369 от 21 июля			
д. 35)	Board 660i4	2017			
	4 Мультимедийный проектор Epson	Microsoft Windows 10 Enterprise -			
	EB-4850WU с потолочным	Акт приема-передачи № 369 от 21			
	креплением	июля 2017			
	5 Телекоммуникационный шкаф				
	ШТК-М-18.6.6-ЗААА с полками				
	6 Телекоммуникационный шкаф				
	ШТК-М-18.6.6-ЗААА с полками				
	7 Экран настенный ScreenMedia				
	213*213 (M082-08156)				
	8 Компьютер iRU Corp 510 15-				
	2400/4096/500/G210-512/DVD-				
	RW/W7S/монитор E-Machines				
	E220HQVB 21,5"				
	9 Комплект учебной мебели на 110				
	посадочных мест				
Учебная	1. Комплект учебной мебели на 25	Adobe Acrobat Reader DC –			
аудитория №	посадочных мест.	бесплатно			
202Б (170002	2. Экран настенный 153х203	Microsoft Windows 10 Enterprise -			
Тверская обл.,	3. Переносной комплект	Акт приема-передачи № 369 от 21			
г. Тверь,	мультимедийной техники.	июля 2017			
Садовый пер.,		Kaspersky Endpoint Security 10 для			
д. 35)		Windows – Акт на передачу прав			
		№2129 от 25 октября 2016 г.			
		Google Chrome – бесплатно			
		MS Office 365 pro plus - Акт			
		приема-передачи № 369 от 21 июля			
		2017			

Помещения для самостоятельной работы:

Наименование помещений	Оснащенность помещений для самостоятельной работы	Перечень лицензионного программного обеспечения.
		_
технического факультета. Компьютерная лаборатория робототехнических систем №4а (170002 Тверская обл., г. Тверь, Садовый пер., д. 35)	б. Демонстрационное оборудование комплект «LegoMidstormsEV3»7. Комплект учебной мебели	от 25.09.2012 Місгоѕоft Express Studio 4 - бесплатно МіКТеХ 2.9 - бесплатно МРІСН 64-bit — бесплатно МЯХМІ 4.0 SP2 Parser and SDK - бесплатно Місгоѕоft Windows 10 Enterprise - Акт приема-передачи № 369 от 21 июля 2017 МЯ Обfice 365 pro plus - Акт приема-передачи № 369 от 21 июля 2017

Х. Сведения об обновлении рабочей программы дисциплины

№п.п.	Обновленный раздел рабочей программы дисциплины (или модуля)	Описание внесенных изменений	Дата и протокол заседания кафедры, утвердившего изменения
1	Раздел IV	Реквизиты «Положения о рейтинговой системе обучения и оценки качества учебной работы студентов ТвГУ» и «Положения о промежуточной аттестации (экзаменах и зачетах) студентов ТвГУ»	Протокол Совета ФТФ №5 от 31 октября 2017 г.

2	Раздел IX	Оснащенность аудиторного	Протокол Совета ФТФ
		фонда для проведения учебных	№5 от 31 октября 2017 г
		занятий и самостоятельной	
		работы студентов согласно	
		«Справки МТО ООП»	