Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Смирнов Сергей Николаевич

Должность: врио р Министерство науки и высшего образования Российской Федерации

Дата подписания: 09.10.2023 14:16:56

Уникальный программный клюФГБОУ ВО «Тверской государственный университет»

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель ООП

А.А. Голубев

Wgn Usone 20/9r.

Рабочая программа дисциплины (с аннотацией)

Нестандартные задачи в школьном курсе математики

Направление подготовки

01.03.01. МАТЕМАТИКА

Профиль подготовки

Преподавание математики и информатики

Для студентов 4 курса

Форма обучения очная

Составитель:

к.ф.-м.н., доцент А.А. Голубев

Тверь, 2019

I. Аннотация

1. Цель и задачи дисциплины

Целями освоения дисциплины являются:

- продемонстрировать, как формировать у школьника умения и навыки по решению нестандартных задач и интерес к предмету, как вооружить учащихся системой знаний и умений по решению нестандартных задач;
- сформировать навыки применения данных знаний при решении разнообразных задач различной сложности;
- сформировать навыки самостоятельной работы, работы в малых группах;
- сформировать навыки работы со справочной литературой;
- сформировать умения и навыки исследовательской работы;
- способствовать развитию алгоритмического мышления;
- способствовать формированию познавательного интереса к математике;
- научить применять теоретический материал, творчески подходить к решению профессиональных задач;
- научить ориентироваться в нестандартных условиях и ситуациях, анализировать возникающие проблемы;
- сформировать систематизированные знания о закономерностях и содержании образовательного процесса, требованиях к его организации в различных учреждениях системы образования.

Задачи освоения дисциплины:

- оказать помощь студентам в профессиональном становлении;
- сформировать у студентов потребность в профессиональном самообразовании;
- изучить передовой педагогический опыт;
- овладеть педагогическими знаниями в области теории и практики обучения и воспитания, управления образовательными системами.

2. Место дисциплины в структуре ООП

Дисциплина относится к формируемой участниками образовательных отношений части блока 1 — к элективным дисциплинам, углубляющим универсальные компетенции и формирующим профессиональные компетенции.

Является дисциплиной, имеющей логические и содержательнометодологические взаимосвязи со следующими дисциплинами: «Методика преподавания математики», «Методика преподавания информатики», «Элементарная математика (алгебра)», «Элементарная математика (геометрия)», «Задачи с параметрами в школьном курсе математики», «Приемы и методы решения стереометрических задач в школьном курсе математики» и др.

Для ее успешного освоения необходимы знания и умения, приобретенные в результате обучения дисциплинам: школьного курса математики, математического анализа, аналитической геометрии и др.

Дисциплина изучается на 4 курсе (7-й семестр).

3. Объём дисциплины: 3 зачётные единицы, 108 академических часов, **в том** числе:

контактная аудиторная работа: лекции 16 часа, практические занятия 16 часа, в том числе практическая подготовка 4 часа;

самостоятельная работа: 76 часов.

4. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Планируемые результаты освоения	Планируемые результаты обучения по дисциплине
образовательной программы	
(формируемые компетенции)	
ПК-1 Способен преподавать	ПК-1.1 Применяет современные методики
математику и (или) информатику в	преподавания профессиональных дисциплин
средней школе, специальных	ПК-1.2 Планирует учебные занятия по
учебных заведениях на основе	1
полученного фундаментального	образовательным программам с учетом уровня
образования и научного	подготовки и психолого-возрастных
мировоззрения	особенностей аудитории

5. Форма промежуточной аттестации и семестр прохождения зачёт (7 семестр).

6. Язык преподавания: русский.

II. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Учебная программа –	ъ	Контактная работа		Самостоятельная
наименование разделов и тем	Всего (час.)	Лекции	Практические зангятия	работа, в том числе контроль (час.)
1. Метод рационализации	16	2	2/2	12
2. Системы уравнений и неравенств	14	2	2	10
3. Уравнения в целых числах	22	4	4	14
4. Задачи с параметрами	22	4	4	14
5. Задачи с обратными тригонометрическими функциями	16	2	2	12
6. Координатный метод решения геометрических задач	18	2	2/2	14
ИТОГО	108	16	16/4	76

Ш. Образовательные технологии

Преподавание учебной дисциплины строится на сочетании аудиторных занятий и различных форм самостоятельной работы студентов.

Также на занятиях практикуется интерактивное взаимодействие студентов с одной стороны и преподавателя с другой, а также студентов между собой и с преподавателем во время лекционных занятий.

Образовательные технологии

- 1. Дискуссионные технологии
- 2. Информационные (цифровые)
- 3. Технологии развития критического мышления

Современные методы обучения

- 1. Активное слушание
- 2. Лекция (традиционная)

IV. Оценочные материалы для проведения текущей и промежуточной аттестации

1. Оценочные материалы для проведения текущей аттестации

Задачи по темам (практические занятия)

1. Метод рационализации

Метод интервалов в развитии: решение квадратных неравенств графическим способом, решение рациональных неравенств методом интервалов, обобщенный метод интервалов; метод рационализации.

1. Провести обоснование следующих соответствий:

1)
$$a^{p(x)} - a^{q(x)} \sim (a-1)(p(x)-q(x))$$
.

2)
$$\log_a p(x) - \log_a q(x) \sim (a-1)(p(x)-q(x))$$
.

3)
$$a^{p(x)} - 1 \sim (a-1)p(x);$$
 4) $\log_a p(x) - 1 \sim (a-1)(p(x)-a);$

5)
$$a^{p(x)} - q(x) \sim (a-1)(p(x) - \log_a q(x));$$
 6)

$$\log_a p(x) - q(x) \sim (a-1)(p(x) - a^{q(x)});$$

7)
$$\log_a p(x) \sim (a-1)(p(x)-1);$$
 8) $\log_a p(x) + \log_a q(x) \sim (a-1)(p(x)q(x)-1);$

9)
$$\log_a p(x) + q(x) \sim (a-1)(p(x)a^{q(x)}-1)$$
. (Всюду $x \in OД3$.)

10)
$$|p(x)| \sim p(x)^2$$
; 11) $\sqrt{p(x)} \sim p(x)$; 12) $\sqrt{|p(x)|} \sim p(x)^2$;

13)
$$|p(x)| - |q(x)| \sim p(x)^2 - q(x)^2 = (p(x) - q(x))(p(x) + q(x))$$
:

14)
$$\sqrt{p(x)} - \sqrt{q(x)} \sim p(x) - q(x);$$
 15) $|p(x)| - \sqrt{q(x)} \sim p(x)^2 - q(x);$

16)
$$\sqrt{|p(x)|} - \sqrt{|q(x)|} \sim (p(x) - q(x))(p(x) + q(x))$$
;

17)
$$|p(x)| - \sqrt{|q(x)|} \sim (p^2(x) - q(x))(p^2(x) + q(x))$$
. (Всюду $x \in \text{ОДЗ.}$)

2. Решите неравенства: 1)
$$\frac{x^2-4}{\log_{1/2}(x^2-1)} \le 0$$
; 2) $x^2-7|x|+10 \le 0$;

3)
$$\log_x(x^2-3) < 0$$
; 4) $\log_{2x+3}x^2-1 < 0$; 5) $\log_{|x+2|}(4+7x-2x^2) \le 2$;

6)
$$\log_{x+3}\left(\frac{1+x^2}{1-x^2}\right) > 0$$
; 7) $\log_{\frac{x}{3}}\left(\log_x\sqrt{3-x}\right) \ge 0$; 8) $\log_{x-2}(x^2-1) > \log_{x-2}(2x^2+x-3)$;

9)
$$(x^2 - x - 2)^{(2x^2 - x - 1)} \ge (x^2 - x - 2)^{(9 - x^2)};$$
 10) $\log_{12x^2 - 41x + 35} (3 - x) \ge \log_{2x^2 - 5x + 3} (3 - x);$

11)
$$\log_{x+2} \left(36+16x-x^2\right) - \frac{1}{16} \log_{x+2}^2 \left(x-18\right)^2 \ge 2$$
; 12) $\log_{\frac{1}{49}} \left(26-x\right) \cdot \log_{6-x} \frac{1}{7} \ge 1$.

13)
$$\frac{1}{x} \log_{0,4} \frac{12 - 4 \cdot 5^{-x}}{5} \le \log_{2,5} \frac{1}{5}$$
. 14) $\begin{cases} \log_{\log_x 3x} (7x - 2) \ge 0, \\ 42^x - 36 \cdot 7^x - 6^x + 36 \le 0. \end{cases}$

15)
$$\begin{cases} 9^{x-3} - 9^{x-2} + 9^{x-1} > 511, \\ \log_7 \frac{3}{x} + \log_7 \left(x^2 - 7x + 11 \right) \le \log_7 \left(x^2 - 7x + \frac{3}{x} + 10 \right). \end{cases}$$

2. Системы уравнений и неравенств

Рациональные системы уравнений. Иррациональные системы уравнений. Системы уравнений и неравенств, содержащие трансцендентные функции. Аналитический и графический способ решения систем неравенств.

1. Решите системы уравнений:

1.
$$\begin{cases} 2x^2 - xy + 3y^2 - 7x - 12y + 1 = 0, \\ x - y = -1. \end{cases}$$
 2.
$$\begin{cases} xy - x + y = 7, \\ xy + x - y = 13. \end{cases}$$

3.
$$\begin{cases} x^{2}y + xy^{2} = 6, \\ xy + x + y = 5. \end{cases}$$
4.
$$\begin{cases} v - u = 1, \\ w - v = 1, \\ (u - 1)^{3} + (v - 2)^{3} + (w - 3)^{3} = 3. \end{cases}$$

5.
$$\begin{cases} 2x^2 - 3xy + y^2 = 3, \\ x^2 + 2xy - 2y^2 = 6. \end{cases}$$
 6.
$$\begin{cases} \sqrt{x} - \sqrt{y} = \frac{\sqrt{xy}}{2}, \\ x + y = 5. \end{cases}$$

2. Решите системы уравнений:

1.
$$\begin{cases} x^{-1} + y^{-1} = 5, \\ x^{-2} + y^{-2} = 13; \end{cases}$$
6.
$$\begin{cases} x + y + z = 3, \\ x + 2y - z = 2, \\ x + yz + zx = 3; \end{cases}$$

2.
$$\begin{cases} \frac{x}{y} + \frac{y}{x} = \frac{13}{6}, \\ x + y = 5; \end{cases}$$
7.
$$\begin{cases} x^2 + 2y^2 = 17, \\ x^2 - 2xy = -3; \end{cases}$$

3.
$$\begin{cases} x^2 + xy = 15, \\ y^2 + xy = 10; \end{cases}$$
8.
$$\begin{cases} \sqrt{x+y} + \sqrt{xy+21} = 13, \\ \sqrt[4]{x+y} + \sqrt[4]{xy+21} = 5; \end{cases}$$

4.
$$\begin{cases} 12(x+y)^2 + x = 2.5 - y, \\ 6(x-y)^2 + x = 0.125 + y; \end{cases}$$

9.
$$\begin{cases} \sqrt{\frac{x+1}{x+y}} + \sqrt{\frac{x+y}{x+1}} = 2, \\ \sqrt{\frac{x+1}{y+2}} - \sqrt{\frac{y+2}{x+1}} = 1,5; \end{cases}$$

5.
$$\begin{cases} x + y + xy = 7, \\ x^2 + y^2 + xy = 13; \end{cases}$$

10.
$$\begin{cases} \sqrt{x+y} + \sqrt{y+z} = 3, \\ \sqrt{y+z} + \sqrt{z+x} = 5, \\ \sqrt{z+x} + \sqrt{x+y} = 4. \end{cases}$$

3. Решите системы неравенств:

1.
$$\begin{cases} \frac{x-1}{2} - \frac{2x+3}{3} + \frac{x}{6} < 2 - \frac{x+5}{2}, \\ 1 - \frac{x+5}{8} + \frac{4-x}{2} < 3x - \frac{x+1}{4}; \end{cases}$$

2.
$$\begin{cases} \sqrt{(x+2)(x-5)} > 8 - x, \\ \sqrt{4 - \sqrt{-x-4}} > \sqrt{-x-3}; \end{cases}$$

3.
$$\begin{cases} \frac{x^2 + 4}{x^2 - 16x + 64} > 0, \\ \sqrt{x + 7} > \frac{x - 5}{4}; \end{cases}$$

4. Решите системы неравенств:

1.
$$\begin{cases} \sqrt{2x^5 + 5x - 6} > 2 - x, \\ \sqrt{2x + 1} < \frac{2(x + 2)}{2 - x} \end{cases}$$

2.
$$\begin{cases} x^2y + xy^2 = 6, \\ xy + x + y = 5. \end{cases}$$

3.
$$\begin{cases} v - u = 1, \\ w - v = 1, \\ (u - 1)^3 + (v - 2)^3 + (w - 3)^3 = 3. \end{cases}$$

4.
$$\begin{cases} 2x^2 - 3xy + y^2 = 3, \\ x^2 + 2xy - 2y^2 = 6. \end{cases}$$

5.
$$\begin{cases} \sqrt{x} - \sqrt{y} = \frac{\sqrt{xy}}{2}, \\ x + y = 5. \end{cases}$$

5. Найти все значения a, при которых множеством всех решений

системы
$$\begin{cases} \frac{x^2 + ax - 2}{x^2 - x + 1} < 2, \\ \frac{x^2 + ax - 2}{x^2 - x + 1} > -3 \end{cases}$$
 является вся числовая прямая.

6. Решите системы уравнений:

1.
$$\begin{cases} 4\cos^2 x - 12\cos x + 5 = 0, \\ \sqrt{y^2 - 4y + 16} + 4\sin x = 0; \end{cases}$$
 2.
$$\begin{cases} 3\sin x = \cos 2x + 1, \\ \sqrt{y^2 + 6y} + 6\cos x = 0; \end{cases}$$

3.
$$\begin{cases} 81^{\sin y} - 30 \cdot 9^{\sin y} + 81 = 0, \\ \sqrt{x} + 2\cos y = 0; \end{cases}$$

5.
$$\begin{cases} x - y = \frac{5\pi}{3}, \\ \sin x = 2\sin y; \end{cases}$$

7.
$$\begin{cases} \sqrt{2}\sin x = \sin y, \\ \sqrt{2}\cos x = \sqrt{3}\cos y; \end{cases}$$

9.
$$\begin{cases} x - y = -\frac{1}{3}, \\ \cos^2 \pi x - \sin^2 \pi y = \frac{1}{2}; \end{cases}$$

11.
$$\begin{cases} tg\frac{x}{2} + tg\frac{y}{2} = 2, \\ ctg x + ctg y = -1,8; \end{cases}$$

13.
$$\begin{cases} x^2 = 8\sin y + 1, \\ x + 1 = 2\sin y; \end{cases}$$

15.
$$\begin{cases} \cos 2y = \cos y, \\ \sqrt{x^2 - 2x} = 2\sin y; \end{cases}$$

2.
$$\begin{cases} 3\sin x = \cos 2x + 1, \\ \sqrt{y^2 + 6y} + 6\cos x = 0; \end{cases}$$

4.
$$\begin{cases} 2^{x} = \sin y, \\ 2^{-x} = 2\sin y + 1; \end{cases}$$

6.
$$\begin{cases} \sin x \cdot \cos y = 0.25, \\ \cos x \cdot \sin y = 0.75; \end{cases}$$

8.
$$\begin{cases} \sin x = y - 3, \\ \cos x = y - 2; \end{cases}$$

10.
$$\begin{cases} x + y = \frac{\pi}{4}, \\ \tan x \cdot \tan y = \frac{1}{6}; \end{cases}$$

12.
$$\begin{cases} 3^{y} + 2\cos x = 0, \\ 2\sin^{2} x - 3\sin x - 2 = 0; \end{cases}$$

14.
$$\begin{cases} \cos y \sqrt{\sin x} = 0, \\ 2\sin^2 x = 2\cos^2 y + 1; \end{cases}$$

16.
$$\begin{cases} x \operatorname{tg} y = 9, \\ x \operatorname{ctg} y = 3; \end{cases}$$

17.
$$\begin{cases} 3^{x} + 2\sin y = 0, \\ 4\cos^{2} y - 4\cos y - 3 = 0; \end{cases}$$
 18.
$$\begin{cases} y^{2} = 4\cos x + 1, \\ y + 1 = 2\cos x. \end{cases}$$

3. Уравнения в целых числах

Определение делимости чисел, свойства делимости, различные признаки делимости. Определение десятичной записи числа, запись числа с помощью степеней десятки, запись нецелого числа с помощью степеней десятки, признак представления обыкновенной дроби в виде конечной десятичной дроби. Определение уравнения в целых числах, решение диофантова уравнения, линейные диофантовы уравнения, квадратные диофантовы уравнения.

4. Задачи с параметрами

Определение уравнения и неравенства с параметром, классификация, методы решения (графические и аналитические) таких уравнений и неравенств. Параметр как переменная (решение задач, в которых удобнее рассматривать параметр в качестве переменной).

- **1.** Решите уравнение $m = \frac{1}{m} + \frac{m-1}{m(x-1)}$ относительно *x*.
- **2.** Решите уравнение $mx^2 + 3mx (m+2) = 0$ относительно x.
- **3.** Решите уравнение $\sqrt{x^2 + ax 2a} = x + 1$ относительно x.
- **4.** Решите неравенство $\log_{\frac{x}{a}} a > \log_{a^2 x} a^2$ относительно x.
- **5.** При каком значении параметра a сумма квадратов корней уравнения $x^2 ax + (a-1) = 0$ будет наименьшей?
- ${f 6.}$ Найдите все значения параметра a, при каждом из которых все корни уравнения

$$3ax^{2} + (3a^{3} - 12a^{2} - 1)x - a(a - 4) = 0$$

удовлетворяют неравенству $|x| \le 1$.

- **7.** Уравнение $x^2 (|a+5| |a-5|)x + (a-12)(a+12) = 0$ имеет два различных отрицательных корня. Найдите а.
- **8.** Уравнение $|1-ax|=1+(1-2a)x+ax^2$ имеет единственный корень. Найдите а.
- 9. При каких значениях параметра a система уравнений $\begin{cases} x^2 + y^2 = 100, \\ x + y = a \end{cases}$ имеет единственное решение?
- **10** (ЕГЭ–2010). Найдите все значения а, при каждом из которых функция $f(x) = x^2 2|x a^2| 8x$ имеет более двух точек экстремума.
- **11 (пробные задания к ЕГЭ–2010).** Найдите все значения а, при каждом из которых неравенство |x+1|+2|x+a|>3-2x выполняется для любого x.
- **12.** Найдите все значения параметра a, при каждом из которых уравнение |x+3|-1=|2x-a| имеет единственный корень.
- **13.** Найдите все значения параметра a, при каждом из которых уравнение |x+3|-1=|2x-a| имеет единственный корень.
- **14.** Найдите все значения a, при каждом из которых уравнение $\left|x^2-6x+8\right|+\left|x^2-6x+5\right|=a$ имеет ровно три корня.
- **15.** Найдите все значения a, при каждом из которых уравнение $|x+a|+\|x-3|-4|=1$ имеет ровно 2 корня.
- **16.** Найдите все значения a, при каждом из которых уравнение $(a+4x-x^2-1)(a+1-|x-2|)=0$ имеет ровно три корня.

17. Найдите все значения a, при каждом из которых уравнение

$$x^{4}(x^{2} + \sqrt{a^{2} - a - 1}) + \sqrt{(8 - a)^{2}} + \sqrt{(27 + a)^{2}} - \sqrt{(8 - a)(27 + a)} = 21$$

имеет единственное решение.

18 (**ЕГЭ–2011**). Найдите все положительные *a*, при каждом из которых система уравнений имеет единственное решение:

$$\begin{cases} (|x|-5)^2 + (y-4)^2 = 9, \\ (x-2)^2 + y^2 = a^2. \end{cases}$$

19 (демонстрационный вариант **2011 г.**). Найдите все значения a, при каждом из которых система уравнений имеет единственное решение:

$$\begin{cases} a(x^4 + 1) = y + 2 - |x|, \\ x^2 + y^2 = 4. \end{cases}$$

20. Найдите все значения a, при каждом из которых система имеет решения:

$$\begin{cases} x^2 + (8a+4)x + 7a^2 + 4a < 0, \\ x^2 + a^2 = 16. \end{cases}$$

- **21.** Найдите все значения a, при каждом из которых значение выражения -(a+1)|x| не равно значению выражения 2x+a для всех x из промежутка (-5;2].
- **22.** Найдите все значения параметра а, при которых количество корней уравнения $(a-5)x^3-2x^2+x=0$ равно количеству общих точек линий $x^2+y^2=a^2$ и y=6-|x-2|.
- **23** (демонстрационный вариант 2012 г.). Найдите все значения параметра a, при каждом из которых наименьшее значение функции $f(x) = 2ax + \left| x^2 8x + 7 \right|$ больше 1.

24 (пробные задания к ЕГЭ–2012). Функция f(x) имеет период 4, чётна и на отрезке [0;2] совпадает с функцией $y=2-x^2$. Найдите, при каких значениях a графики функций f(x) и g(x)=(2a-1)|x+3| пересекаются ровно в 7 различных точках.

25 (пробные задания к ЕГЭ–2012). При каких a уравнение $|x^2-2x-3|-2a=|x-a|-1$ имеет ровно три корня?

26. Известно, что неравенство

$$\sqrt{b^5} \left(8x - x^2 - 16 \right) + \frac{\sqrt{b}}{8x - x^2 - 16} \ge -\frac{2}{3} b \left| \cos \pi x \right|$$

имеет хотя бы один корень. Найдите наибольшее из возможных значений параметра b .

27. Найдите все значения переменной x, удовлетворяющие неравенству

$$(a+2)x^3-(2a+1)x^2-6x+\left(a^2+4a-5\right)>0$$
 хотя бы при одном значении a , принадлежащем промежутку $[-2;1]$.

- **28.** Найдите все значения x, которые удовлетворяют неравенству $(2a-1)x^2 < (a+1)x+3a$ при любом значении параметра a, принадлежащем промежутку (1;2).
 - **29.** Решите уравнение $\sqrt{a^2 x} + \sqrt{b^2 x} = a + b$ относительно x.
- 30. Найдите все a, при которых среди корней уравнения $\sin 2x + 6a\cos x \sin x 3a = 0$ найдутся два, удалённые друг от друга на расстояние $3\pi/2$.
- **31.** А выполняет некоторую работу в срок, на a дней больший, чем B, и на b дней больший, чем C (a>0, b>0). А и B, работая вместе, выполняют эту работу в срок, равный сроку C. Определите время, в которое каждый выполняет эту работу отдельно.

- **32.** Найдите все значения параметра b, при каждом из которых для любого a неравенство $(x-a-2b)^2+(y-3a-b)^2<1/2$ имеет хотя бы одно целочисленное решение (x;y).
- ${f 33.}$ Найдите все значения a , при которых система уравнений $\begin{cases} \sqrt{|y+3|} = 1 \sqrt{5|x|}, \\ 16a-9-6y=25x^2+y^2 \end{cases}$ имеет ровно четыре корня.
- **34.** Найдите все значения p , при которых множество значений функции $f(x) = \frac{3x+p}{x^2+5x+7}$ содержит полуинтервал (-1;3]. Определите при каждом таком p множество значений функции f .
- **35.** Найдите все значения a, для каждого из которых неравенство $ax^2 4x + 3a + 1 > 0$ выполняется для всех x.
- **36.** Найдите все значения a, для каждого из которых неравенство $ax^2 4x + 3a + 1 > 0$ выполняется для всех x > 0.
- **37.** Найдите все значения a, для каждого из которых неравенство $ax^2 4x + 3a + 1 > 0$ выполняется для всех x < 0.
- **38.** Найдите все значения a, для каждого из которых неравенство $ax^2 4x + 3a + 1 > 0$ выполняется для всех -1 < x < 0.
- **39.** Найдите все значения p, при каждом из которых для любого q система $\begin{cases} x^2 + y^2 = 1, \\ y = q|x| + p \end{cases}$ имеет решения.
 - **40.** Найдите все значения p, при каждом из которых найдется q такое, $(x^2 + y^2 1)$

что система $\begin{cases} x^2 + y^2 = 1, \\ y = q|x| + p \end{cases}$ имеет единственное решение.

- **41.** Найдите все значения a, при каждом из которых неравенство $\left|\frac{x^2-ax+1}{x^2+x+1}\right| < 3$ выполняется для всех x.
- **42.** Найдите все целые a и b, для которых один из корней уравнения $3x^2 + ax^2 + bx + 12 = 0$ равен $1 + \sqrt{3}$.
 - **43.** При всех *a* решите уравнение $x \sqrt{a x^2} = 1$.
- **44.** Выполнив замену переменного $t = x^2 6x + 5$, найдите все значения a, при каждом из которых уравнение $\left|x^2 6x + 8\right| + \left|x^2 6x + 5\right| = a$ имеет ровно три корня.
- **45.** Найдите все значения a, при каждом из которых уравнение $(a+4x-x^2-1)(a+1-|x-2|)=0$ имеет ровно три различных корня.
- **46.** Найдите все значения a, при каждом из которых система $\begin{cases} y-x^2=a, \\ x-y^2=a \end{cases}$ имеет ровно два решения.
- **47.** Найдите все значения a , такие, что наименьшее значение функции $\left|x^2-(1+a)x+a\right|+(a-1)|x+1|$ меньше 2.
- **48.** Найдите все значения a, при каждом из которых уравнение $x^{10} + (a-2|x|)^2 + x^2 2|x| + a = 0$ имеет более трёх различных решений.
- **49.** Найдите все значения a, при каждом из которых уравнение 1 = |x-3| |2x+a| имеет единственное решение.
- **50.** Найдите все значения a, при каждом из которых из неравенств $0 \le x \le 1$ следует неравенство $(a^2 + a 2)x^2 (a + 5)x 2 \le 0$.

- **51.** Найдите все значения a, при каждом из которых функция $f(x) = x^2 + 4x + \left| x^2 \frac{3}{2}x 1 \right| a$ принимает только неотрицательные значения.
- **52.** Найдите все значения a, при каждом из которых уравнение 3x + |2x + |a x|| = 7|x + 2| имеет хотя бы один корень.
- **53.** Найдите все такие a, что наименьшее значение функции $f(x) = 4|x-a| + |x^2 + 2x 3|$ меньше 4.
- **54.** Найдите все значения a, при каждом из которых уравнение $\cos \sqrt{a^2 x^2} = 1$ имеет ровно десять решений.

5. Задачи с обратными тригонометрическими функциями

Определения арксинуса, арккосинуса, арктангенса и арккотангенса действительного числа. Основные формулы. Обратные тригонометрические функции: определения, свойства, графики. Уравнения и неравенства, содержащие обратные тригонометрические функции.

1. Вычислите $\arcsin\left(-\frac{\sqrt{3}}{2}\right)$.

2. Вычислите:

a) $\cos(\arccos(-2/3))$; 6) $\cos(\pi - \arccos(3/4))$; B) $\sin(\pi/2 - \arccos(1/5))$;

г)
$$\sin(\arccos(-4/5))$$
; д) $tg(\arccos(3/\sqrt{10}))$; e) $tg^2(\frac{1}{2}\arccos(2/3))$.

3. Докажите тождества

a)
$$\sin(\arccos a) = \sqrt{1 - a^2}, a \in [-1;1],$$
 (2)

6)
$$\operatorname{tg}(\arccos a) = \frac{\sqrt{1-a^2}}{a}, \ a \in [-1;1], \ a \neq 0,$$
 (3)

B)
$$ctg(arccos a) = \frac{a}{\sqrt{1-a^2}}, a \in (-1;1).$$

- **4.** Сравните числа $\arccos \frac{1}{3}$ и $\arccos \left(-\frac{1}{3}\right)$.
- **5.** Сравните числа $\arccos a_1$ и $\arccos a_2$, если известно, что $a_1,a_2\in \left[-1;1\right]$ и $a_1< a_2$.
 - 6. Докажите формулу

 $arccos(-a) = \pi - arccos a$ для любого $a \in [-1;1]$.

- 7. Докажите, что $\arccos 0.6 + \arccos 0.8 = \pi/2$.
- **8.** Вычислите $\arcsin\left(-\frac{\sqrt{2}}{2}\right)$.
- 9. Вычислите:
- a) $\sin(\arcsin(2/7))$; 6) $\sin(\pi + \arcsin(-3/14))$; B) $\cos(\pi/2 \arcsin(1/5)$;
- $_{\Gamma}$) $\cos\left(\arcsin\left(-\sqrt{3}/5\right)\right)$; π) $\cot\left(\arcsin\left(1/\pi\right)\right)$; π) e) $\cot^2\left(\frac{1}{2}\arcsin\left(\frac{2}{3}\right)\right)$.
 - **10.** Сравните числа $\arcsin(2/5)$ и $\arcsin(-1/3)$.
 - 11. Докажите следующее свойство арксинуса:

 $\arcsin a_1 < \arcsin a_2$, если $a_1 < a_2$ ($a_1, a_2 \in [-1;1]$).

12. Докажите формулу

 $\arcsin(-a) = -\arcsin a$ для любого $a \in [-1;1]$.

13. Докажите формулу, показывающую связь между арккосинусом и арксинусом:

 $\arcsin a + \arccos a = \pi/2$ для любого $a \in [-1;1]$

- 14. Докажите справедливость следующих равенств:
 - a) $\arccos a = \arcsin \sqrt{1-a^2}$, если $a \in [0;1]$;
 - б) $\arcsin a = \arccos \sqrt{1-a^2}$, если $a \in [0;1]$;
 - в) $\pi \arccos a = \arcsin \sqrt{1 a^2}$, если $a \in [-1;0]$;

$$\Gamma$$
) – arcsin $a = \arccos \sqrt{1-a^2}$, если $a \in [-1;0]$.

15. Проверьте равенства:

a)
$$\pi/2 + \arcsin(2/\sqrt{7}) = \arccos(-2/\sqrt{7});$$

6)
$$-\arccos(-\sqrt{3/5}) + \pi/2 = -\arcsin(\sqrt{3/5});$$

B)
$$\pi/2 + \arccos(\sqrt{3/7}) = \arccos(-2/\sqrt{7});$$

$$\Gamma$$
) - arccos $\left(-\sqrt{3/5}\right) + \pi/2 = -\arccos\left(\sqrt{2/5}\right)$.

- **16.** Определите геометрическое место точек (г.м.т.) (x; y) плоскости, удовлетворяющих неравенству:
 - a) $-\pi/2 \le \arcsin x + \arcsin y \le \pi/2$;
 - δ) $\pi/2 < \arcsin x + \arcsin y \le \pi$;
 - B) $-\pi \le \arcsin x + \arcsin y < -\pi/2$.
 - **17.** Выразите сумму $\arcsin x + \arcsin y$, где $x, y \in [-1;1]$, через арксинус.
- **18.** Выразите сумму $\arccos x + \arccos y$, где $x, y \in [-1;1]$, через арккосинус.
 - 19. Вычислите:

a)
$$\arcsin\left(\sin\frac{\pi}{3}\right)$$
; 6) $\arccos\left(\cos\frac{17\pi}{6}\right)$; b) $\arcsin\left(\sin\frac{23\pi}{5}\right)$;

- Γ) arccos(cos 10); π arcsin(sin 14); π arccos(cos 20).
- 20. Найдите область определения и построить график функции

$$f(x) = \arcsin(\arcsin x) + \arccos\left(\frac{2\arccos x}{\pi - 2}\right).$$

21. Постройте графики следующих функций:

a)
$$y = \sin(\arcsin x)$$
;

$$σ$$
) $y = cos(arccos x)$;

B)
$$y = \arcsin(\sin x)$$
;

$$\Gamma$$
) $y = \arccos(\cos x)$.

6. Координатный метод решения геометрических задач

Декартовы координаты на плоскости и в пространстве. Координаты точки. Координаты вектора. Формула координаты середины отрезка. Длина вектора. Формула расстояния между двумя точками. Угол между векторами. Скалярное произведение векторов. Вычисление углов между прямыми и плоскостями. Уравнение плоскости. Формулы расстояния от точки до плоскости.

- 1. Дана прямоугольная трапеция с основаниями а и b. Найдите расстояние между серединами ее диагоналей.
- 2. Медиана, проведенная к основанию равнобедренного треугольника, равна 160 см, а основание треугольника равно 80 см. Найдите две другие медианы этого треугольника.
- 3. В прямоугольном равнобедренном треугольнике проведены медианы острых углов. Вычислите косинус угла между ними.
- 4. Дан ромб ABCD, диагонали которого равны 2а и 2b. Найдите множество всех точек M, для каждой из которых выполняется условие: $AM^2+DM^2=BM^2+CM^2$.
- 5. Найти геометрическое место точек, сумма квадратов расстояний от которых до двух данных точек есть величина постоянная.
- 6. Дана окружность радиуса г. Через одну из ее точек (точку А) проведены всевозможные хорды. Найти геометрическое место точек, делящих эти хорды пополам.
- 7. Даны координаты вершин четырехугольника ABCD: A(-6;1), B(0;5), C(6;-4),D(0,-8). Докажите, что это прямоугольник и найдите координаты точки пересечения его диагоналей.
- 8. Окружность задана уравнением $(x-1)^2 + y^2 = 9$. Составьте уравнения прямых, проходящих через центр этой окружности и параллельных координатным осям. Найдите также уравнение касательной к окружности,

параллельной оси OX, и наиболее близко расположенной к началу координат. Обоснуйте свои действия.

- 9. Найдите длину средней линии треугольника, параллельной стороне АВ, если координаты вершин таковы: А(-3;-6), В(-8;6), С(4;-10).
- 10. Высота AD треугольника ABC делит сторону BC на отрезки BD=10 см и CD=4 см. Введите удобную систему координат и определите координаты вершин этого треугольника, если угол при вершине B равен 45 градусов. Объясните, почему выбранная система наиболее удобная.
- 11. Определите геометрическое место точек плоскости, удовлетворяющих следующему условию: расстояния от каждой из этих точек до концов данного отрезка относятся как 2:3.
- 12. найдите уравнение прямой, проходящей через точку A(2;4) и перпендикулярной прямой, заданной уравнением 4x-9y=0. Определите, в каких точках эта прямая пересекает координатные оси.
- 13. Составьте параметрические, каноническое и общее уравнения прямой, проходящей через середину отрезка AB, и пересекающей отрезок AC в точке M, так, что AM=3MC. Если A(8;0), B(-4; 8) и C(12;16).
- 14. Найдите расстояние от точки M(-3; 1; 2) до плоскости, заданной уравнением 3x + 4y 12z + 2 = 0.
- 15. Вычислите расстояние от начала координат до плоскости, заданной уравнением 2x + 3y 6z + 14 = 0.
- 16. Вычислите расстояние между параллельными плоскостями, заданными уравнениями 3x + 2y + 4z + 11 = 0 и 9x + 6y + 12z 5 = 0.
- 17. Докажите, что в общем случае расстояние между параллельными плоскостями α и β:

$$\alpha: Ax + By + Cz + D_1 = 0,$$
 $\beta: Ax + By + Cz + D_2 = 0$ вычисляется по формуле: $\rho(\alpha,\beta) = \frac{|D_1 - D_2|}{\sqrt{A^2 + B^2 + C^2}}.$

2. Оценочные материалы для проведения промежуточной аттестации

Планируемый	Типовые контрольные задания	Критерии оценивания

образовательный		и шкала оценивания
результат		
(компетенция,		
индикатор) ПК-1 Способен	1. Описать понятия и	Знает все понятия и
преподавать	сформулировать утверждения,	утверждения,
математику и		необходимые для
(или)	найдите все значения a , при	решения задачи – 85-
информатику в	каждом из которых уравнение	100%.
средней школе,	1 01	Формулирует определения понятий и
специальных	3x + 2x + a - x = 7 x + 2 имеет	утверждения,
учебных	хотя бы один корень.	необходимые для
заведениях на		решения задачи, с
основе	2. Организовать планирование	незначительными
полученного	изучения теоретического	ошибками – 65-84% Знает некоторые
фундаментального	материала для подготовки к	Знает некоторые определения понятий и
образования и	решению задачи: решите систему	утверждения,
научного	уравнений	необходимые для
мировоззрения	$\int x + y + z = 3,$	решения задачи – 45-
ΠK-1.1	$\begin{cases} x + 2y - 7 = 2 \end{cases}$	64%
Применяет	$\begin{cases} x + 2y - z = 2, \\ x + yz + zx = 3. \end{cases}$	Формулирует определения понятий и
современные	(x+yz+zx=3.	утверждения,
методики		необходимые для
преподавания	3. Организовать учебную	решения задачи, с
профессиональных	деятельность для решения задачи:	грубыми ошибками – 20-44%
дисциплин	решите систему уравнений	Не знает определения
ПК-1.2 Планирует	$\begin{cases} x+y+z=3, \end{cases}$	понятий и
учебные занятия	$\begin{cases} x + 2y - z = 2, \end{cases}$	утверждения,
no		необходимые для
образовательным	(x+yz+zx=3.	решения задачи – 0-
программам с		19%
учетом уровня		Грамотно
подготовки и		осуществляет
психолого-		организацию учебной
возрастных		деятельности,
особенностей		адекватно оценивает
аудитории		полученный результат
		- 85-100%.
		Грамотно
		осуществляет
		организацию учебной
		деятельности, не оценивает результат
		деятельности – 65-84%
		Осуществляет
		· J —

организацию у	чебной
деятельности	c
некоторыми	
незначительным	И
методическими	
ошибками- 45-64	1%
Осуществляет	ļ
организацию у	чебной
деятельности	c
грубыми	ļ
методическими	ļ
ошибками – 20-4	14%
Не сп	юсобен
организовать уч	чебную
деятельность 0-1	.9%

V. Учебно-методическое и информационное обеспечение дисциплины

1) Рекомендуемая литература

а) Основная литература:

1. Кузин Г.А. Нестандартные задачи по курсу высшей математики / Г.А. Кузин. - Новосибирск : НГТУ, 2012. - 128 с. - ISBN 978-5-7782-1923-6 [Электронный ресурс]. — Режим доступа: http://biblioclub.ru/index.php?page=book&id=228869

б) Дополнительная литература:

- 1. Канцедал, С. А. Экстремальные задачи дискретной математики : учебник / С.А.Канцедал. М. : ИД ФОРУМ : ИНФРА-М, 2018. (Высшее образование). ISBN 978-5-8199-0633-0. Текст : электронный. URL: https://znanium.com/catalog/product/938037
 - 2) Программное обеспечение

Google Chrome	бесплатное ПО
Яндекс Браузер	бесплатное ПО
Kaspersky Endpoint Security 10	акт на передачу прав ПК545 от 16.12.2022
Многофункциональный	бесплатное ПО
редактор ONLYOFFICE	
OC Linux Ubuntu	бесплатное ПО

3) Современные профессиональные базы данных и информационные справочные системы

No	Вид информационного ресурса,	
,	наименование	Адрес (URL)
п/п	информационного	

	pecypca	
1	ЭБС «ZNANIUM.COM»	https://znanium.com/
2	ЭБС «ЮРАИТ»	https://urait.ru/
3	ЭБС «Университетская библиотека онлайн»	https://biblioclub.ru/
4	ЭБС IPR SMART	http://www.iprbookshop.ru/
5	ЭБС «ЛАНЬ»	http://e.lanbook.com
6	ЭБС ТвГУ	http://megapro.tversu.ru/megapro/Web
7	Репозитарий ТвГУ	http://eprints.tversu.ru
8	Ресурсы издательства Springer Nature	http://link.springer.com/
9	СПС КонсультантПлюс (в сети ТвГУ)	

VI. Методические материалы для обучающихся по освоению дисциплины

Учебная программа курса

1. Метод рационализации

Метод интервалов в развитии: решение квадратных неравенств графическим способом, решение рациональных неравенств методом интервалов, обобщенный метод интервалов; метод рационализации.

2. Системы уравнений и неравенств

Рациональные системы уравнений. Иррациональные системы уравнений. Системы уравнений и неравенств, содержащие трансцендентные функции. Аналитический и графический способ решения систем неравенств.

3. Уравнения в целых числах

Определение делимости чисел, свойства делимости, различные признаки делимости. Определение десятичной записи числа, запись числа с помощью степеней десятки, запись нецелого числа с помощью степеней десятки, признак представления обыкновенной дроби в виде конечной десятичной дроби. Определение уравнения в целых числах, решение диофантова уравнения, линейные диофантовы уравнения, квадратные диофантовы уравнения.

4. Задачи с параметрами

Определение уравнения и неравенства с параметром, классификация, методы решения (графические и аналитические) таких уравнений и неравенств. Параметр как переменная (решение задач, в которых удобнее рассматривать параметр в качестве переменной).

5. Задачи с обратными тригонометрическими функциями

Определения арксинуса, арккосинуса, арктангенса и арккотангенса действительного числа. Основные формулы. Обратные тригонометрические функции: определения, свойства, графики. Уравнения и неравенства, содержащие обратные тригонометрические функции.

6. Координатный метод решения геометрических задач

Декартовы координаты на плоскости и в пространстве. Координаты точки. Координаты вектора. Формула координаты середины отрезка. Длина вектора. Формула расстояния между двумя точками. Угол между векторами. Скалярное произведение векторов. Вычисление углов между прямыми и плоскостями. Уравнение плоскости. Формулы расстояния от точки до плоскости.

Вопросы к зачету

- 1. Метод рационализации
- 2. Системы уравнений и неравенств
- 3. Уравнения в целых числах
- 4. Задачи с параметрами
- 5. Задачи с обратными тригонометрическими функциями
- 6. Координатный метод решения геометрических задач

Методические указания для обучающихся по освоению дисциплины

Организуя свою учебную работу, студенты должны:

Во-первых, выявить рекомендуемый режим и характер учебной работы по изучению теоретического курса, практическому применению изученного материала, по выполнению заданий для самостоятельной работы, по использованию информационных технологий и т.д.

Во-вторых, ознакомиться с указанным в методическом материале по дисциплине перечнем учебно-методических изданий, рекомендуемых студентам для подготовки к занятиям и выполнения самостоятельной работы, а также с методическими материалами на бумажных и/или электронных носителях, выпущенных кафедрой своими силами и предоставляемые студентам во время занятий.

Самостоятельная работа студентов, предусмотренная учебным планом должна соответствовать более глубокому усвоению изучаемого курса, формировать навыки исследовательской работы и ориентировать студентов на умение применять теоретические знания на практике.

- 1. Работа с учебными пособиями. Для полноценного усвоения курса студент должен, прежде всего, овладеть основными понятиями этой дисциплины. Необходимо усвоить определения и понятия, уметь приводить их точные формулировки, приводить примеры объектов, удовлетворяющих этому определению. Кроме того, необходимо знать круг фактов, связанных с данным понятием. Требуется также знать связи между понятиями, уметь устанавливать соотношения между классами объектов, описываемых различными понятиями.
- 2. Самостоятельное изучение тем. Самостоятельная работа студента является важным видом деятельности, позволяющим хорошо усвоить изучаемый предмет и одним из условий достижения необходимого качества подготовки и профессиональной переподготовки специалистов. Она предполагает самостоятельное изучение студентом рекомендованной учебно-методической литературы, различных справочных материалов, написание рефератов, выступление с докладом, подготовку к лекционным и практическим занятиям, подготовку к зачёту.
- **3.** Составление глоссария. В глоссарий должны быть включены основные понятия, которые студенты изучают в ходе самостоятельной работы. Для полноты исследования рекомендуется вписывать в глоссарий и те термины, которые студентам будут раскрыты в ходе лекционных занятий.
- **4.** Составление конспектов. В конспекте отражены основные понятия темы. Для наглядности и удобства запоминания использованы схемы и таблицы.
- **5. Подготовка к зачету.** При подготовке к зачету студенты должны использовать как самостоятельно подготовленные конспекты, так и материалы, полученные в ходе занятий.

Качество усвоения студентом каждой дисциплины оценивается по 100-балльной шкале.

Интегральная рейтинговая оценка (балл) по каждому (периоду обучения) складывается из оценки текущей работы студентов на семинарских и практических занятиях, выполнения индивидуальных творческих заданий и др. и оценки за выполнение студентом учебного задания при рейтинговом контроле успеваемости. При этом доля баллов, выделенных на рейтинговый контроль не должна превышать 50% общей суммы баллов данного модуля (периода обучения).

Максимальная сумма баллов по учебной дисциплине, заканчивающейся зачетом, по итогам семестра составляет 100 баллов (50 баллов – 1-й модуль и 50 баллов – 2-й модуль).

Студенту, набравший 40 баллов и выше по итогам работы в семестре, в экзаменационной ведомости и зачетной книжке выставляется оценка «зачтено». Студенту, набравшему до 39 баллов включительно, сдает зачет,

Согласно подходам балльно-рейтинговой системы в рамках оценки знаний, умений, владений (умений применять) и (или) опыта деятельности дисциплины установлены следующие аспекты:

- Содержание учебной дисциплины в рамках одного семестра делится на два модуля (периода обучения). По окончании модуля (периода обучения) осуществляется рейтинговый контроль успеваемости знаний студентов.
 - Сроки проведения рейтингового контроля:

осенний семестр — I рейтинговый контроль успеваемости проводится согласно графику учебного процесса, II рейтинговый контроль успеваемости - две последние недели фактического завершения семестра по графику учебного процесса;

весенний семестр — I рейтинговый контроль успеваемости проводится согласно графику учебного процесса, II рейтинговый контроль успеваемости — две последние недели фактического завершения семестра по графику учебного процесса.

VII. Материально-техническое обеспечение дисциплины

Наименование специальных* помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения. Реквизиты подтверждающего документа
Учебная аудитория для	Комплект учебной	Google Chrome – бесплатно
проведения занятий	мебели, интерактивная	Kaspersky Endpoint Security 10
лекционного типа, занятий	система со встроенным	для Windows – Акт на
семинарского типа,	проектором.	передачу прав ПК545 от
курсового проектирования		16.12.2022
(выполнения курсовых		Lazarus – бесплатно
работ), групповых и		OpenOffice – бесплатно
индивидуальных		Многофункциональный
консультаций, текущего		редактор ONLYOFFICE беспл
контроля и промежуточной		атное ПО – бесплатно
аттестации,		OC Linux Ubuntu бесплатное
учебная аудитория: № 207		ПО – бесплатно
(170002 Тверская обл., г.		
Тверь,		
пер. Садовый, д. 35)		
Учебная аудитория для	Комплект учебной	Google Chrome – бесплатно
проведения занятий	мебели, СĎ-магнитола,	Kaspersky Endpoint Security 10

лекционного типа, занятий	компьютер: (системный	для Windows – Акт на
семинарского типа,	блок + монитор),	передачу прав ПК545 от
курсового проектирования	многофункциональный	16.12.2022
(выполнения курсовых	лазер.	Lazarus – бесплатно
работ), групповых и	копир/принтер/сканер,	OpenOffice – бесплатно
индивидуальных	видеоплеер, телевизор,	Многофункциональный
консультаций, текущего	DVD плеер.	редактор ONLYOFFICE беспл
контроля и промежуточной		атное ПО – бесплатно
аттестации,		OC Linux Ubuntu бесплатное
учебная аудитория: № 208		ПО – бесплатно
(170002 Тверская обл., г.		
Тверь,		
пер. Садовый, д. 35)		

VIII. Сведения об обновлении рабочей программы дисциплины

№ п.п.	Обновленный раздел рабочей программы	Описание внесенных изменений	Дата и № протокола заседания кафедры / методического
	дисциплины		совета факультета, утвердившего изменения
1.	V. Учебно- методическое и информационное обеспечение дисциплины	1) Рекомендуемая литература — актуализация списка	Решение научно- методического совета математического факультета (протокол №1 от 20.09.2022 г.)
2.	V. Учебно- методическое и информационное обеспечение дисциплины	1) Рекомендуемая литература — актуализация списка	Решение научно- методического совета математического факультета (протокол №1 от 19.09.2023 г.)