Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Смирнов Сергей Министерство науки и высшего образования Российской Федерации

Должность: врио ректора

Дата подписания: 23.09.2022 15:31 ФТБОУ ВО «Тверской государственный университет»

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель ООП

О.Н. Медведева

«28»

КНОНИ

2022 г.

Рабочая программа дисциплины (с аннотацией)

Молекулярная физика

Направление подготовки 27.03.05 Инноватика

профиль

Управление инновациями (по отраслям и сферам экономики)

Для студентов 1 курса, очной формы обучения

Составитель: к.ф.-м.н., доцент Новоселов А.Р.

I. Аннотация

1. Цель и задачи дисциплины

Целью освоения дисциплины является: создание фундаментальной базы знаний по молекулярной физике, на основе которой в дальнейшем можно развивать более углубленное и детализированное изучение всех разделов физики и специализированных курсов.

Задачами освоения дисциплины являются:

- изучение основных физических моделей и процессов в рамках молекулярной физики;
- установление связи между различными физическими явлениями, вывод основных законов в виде математических уравнений;
- постановка и анализ задач, применение различных методов решения.

2. Место дисциплины в структуре ООП

Дисциплина «Молекулярная физика» изучается в модуле Общая физика Блока 1. Дисциплины обязательной части учебного плана ООП.

В курсе излагаются базовые, но, в тоже время, фундаментальные представления о термодинамике, молекулярной физике и физической кинетике, на основе которых в дальнейшем можно развивать более углубленное и детализированное изучение всех разделов физики и специализированных курсов. Уровень начальной подготовки обучающегося для успешного освоения дисциплины: *Иметь представление* об основных понятиях и законах молекулярной физики в рамках программы средней школы; *Знать* алгебру, геометрию и основы математического анализа в рамках программы средней школы. Некоторые элементы математического анализа и алгебры, не входящие в школьный курс, вводятся по мере необходимости. Теоретические дисциплины (или модули) и практики, для которых освоение данной дисциплины (или модуля) необходимо как предшествующее: общий физический практикум, курсы общей и теоретической физики.

3. Объем дисциплины: <u>5</u> зачетных единиц, <u>180</u> академических часов, **в том** числе:

контактная аудиторная работа: лекции 36 часов, семинарские занятия 36 часов;

самостоятельная работа: 108 часов, в том числе контроль 27 часов.

4. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Планируемые результаты освоения	Планируемые результаты обучения по дисциплине
образовательной программы	
(формируемые компетенции)	
УК-1. Способен осуществлять поиск,	УК-1.1. Анализирует задачу, выделяя ее базовые
критический анализ и синтез информации,	составляющие;
применять системный подход для решения	УК-1.5. Рассматривает и предлагает возможные
поставленных задач	варианты решения поставленной задачи, оценивая
	их достоинства и недостатки.
ОПК-1. Способен анализировать задачи	ОПК-1.2. Анализирует физические объекты и
профессиональной деятельности на основе	процессы используя положения, законы и методы
положений, законов и методов в области	естественных и технических наук;
математики, естественных и технических	ОПК-1.3. Осуществляет поиск и анализ
наук.	информации в рамках поставленной задачи,
	используя знание положений, законов и методов
	физики.
ОПК-2. Способен формулировать задачи	ОПК-2.2. Предлагает возможные варианты
профессиональной деятельности на основе	решения поставленной задачи, используя
знаний профильных разделов	положения, законы и методы физики.
математических, технических и	
естественнонаучных дисциплин	
(модулей).	

5. Форма промежуточной аттестации и семестр прохождения

Экзамен во 2 семестре.

- 6. Язык преподавания: русский.
- II. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий.

1.Для студентов очной формы обучения

Учебная программа –	Всего	Контактная работа (час.)	Самостояте
наименование разделов и тем	(час.)		льная

						работа, в том числе Контроль (час.)
		Лекі	ции		нарские ятия	
		всего	в т.ч. ПП	всего	в т.ч. ПП	
1. Предмет молекулярной физики. Термодинамический и статистический методы изучения макроскопических систем. Основные понятия термодинамики. Термодинамические системы. Термодинамическое равновесие. Температура. Термометрия. Термодинамические параметры. Уравнение состояния.	9	2		2		5
2. Внутренняя энергия, работа, теплота. Первый закон термодинамики. Теплоемкость. Применение первого закона термодинамики к процессам в идеальном газе. Адиабатический процесс. Уравнение Пуассона.	9	2		2		5
3. Циклы. Тепловые и холодильные машины. Цикл Карно. Второй закон термодинамики. Постулаты Томсона и Клаузиуса. Обратимые и необратимые процессы. Теорема Карно. Термодинамическая шкала температур.	16	4		4		8
4. Равенство Клаузиуса. Энтропия. Закон возрастания энтропии. Фундаментальное соотношение Гиббса. Термодинамические функции. Третий закон термодинамики.	16	4		4		8
5. Теплопроводность. Закон Фурье. Простейшие стационарные задачи теплопроводности. Выравнивание температур.	9	2		2		5
6. Межмолекулярные взаимодействия. Модель идеального газа. Давление газа. Молекулярно-кинетический смысл температуры. Равномерное распределение	16	4		4		8

				T
кинетической энергии по				
степеням свободы. Теплоемкость				
идеальных газов и твердых тел.				
Броуновское движение.				
7. Распределение молекул по	15	4	4	7
скоростям. Функции				
распределения Максвелла.				
Распределение молекул по				
абсолютным значениям				
скорости. Характерные				
скорости. Экспериментальная				
проверка распределения				
Максвелла. Столкновения				
молекул со стенкой сосуда.				
8. Молекулы в силовом поле.	9	2	2	5
Барометрическая формула.				
Распределение Больцмана. Связь				
распределений Больцмана и				
Максвелла.				
9. Статистический смысл	9	2	2	5
энтропии. Флуктуации.		_		
Зависимость относительной				
флуктуации от числа молекул.				
10. Явления переноса в газах.	13	4	4	5
Средняя длина свободного	13	7		3
пробега молекул. Молекулярно-				
кинетическая оценка				
коэффициентов переноса в газах.				
Явления в разряженных газах.				
12. Фазовые переходы. Системы	9	2	2	5
с переменным числом частиц.	9	۷		5
Химический потенциал. Условия				
· ·				
равновесия двухфазной однокомпонентной системы.				
, ,				
Уравнение Клайперона-				
Клаузиуса. Фазовые диаграммы.				
Тройная точка. Понятие о				
фазовых переходах второго рода.				_
13. Граница раздела фаз.	9	2	2	5
Поверхностное натяжение.				
Формула Лапласа. Смачивание.				
Капиллярные явления.				
Зависимость давления				
насыщенного пара от кривизны				
поверхности жидкости.				
Метастабильные состояния.				
14. Твердые тела. Основные	9	2	2	5
свойства кристаллов.				
Кристаллическая решетка.				
Элементы симметрии				
кристаллов. Дефекты в				
кристаллах.				
			•	

Экзамен	27			27
Итого	180	36	36	108

III. Образовательные технологии

Учебная программах-	Вид занятия	Образовательные технологии
наименование разделов и тем		-
1. Предмет молекулярной физики. Термодинамический и статистический методы изучения макроскопических систем. Основные понятия термодинамики. Термодинамические системы. Термодинамическое равновесие. Температура. Термометрия. Термодинамические параметры. Уравнение	Лекции, практические занятия	Изложение теоретического материала (презентация) Решение задач Самостоятельное изучение теоретического материала
состояния. 2. Внутренняя энергия, работа, теплота. Первый закон термодинамики. Теплоемкость. Применение первого закона термодинамики к процессам в идеальном газе. Адиабатический процесс. Уравнение Пуассона.	Лекции, практические занятия	Изложение теоретического материала (презентация) Решение задач Самостоятельное изучение теоретического материала
3. Циклы. Тепловые и холодильные машины. Цикл Карно. Второй закон термодинамики. Постулаты Томсона и Клаузиуса. Обратимые и необратимые процессы. Теорема Карно. Термодинамическая шкала температур.	Лекции, практические занятия	Изложение теоретического материала (презентация) Решение задач Самостоятельное изучение теоретического материала
4. Равенство Клаузиуса. Энтропия. Закон возрастания энтропии. Фундаментальное соотношение Гиббса. Термодинамические функции. Третий закон термодинамики.	Лекции, практические занятия	Изложение теоретического материала (презентация) Решение задач Самостоятельное изучение теоретического материала
5. Теплопроводность. Закон Фурье. Простейшие стационарные задачи	Лекции, практические занятия	Изложение теоретического материала (презентация) Решение задач

	T	
теплопроводности.		Самостоятельное изучение
Выравнивание температур.		теоретического материала
6. Межмолекулярные	Лекции, практические занятия	Изложение теоретического
взаимодействия. Модель		материала (презентация)
идеального газа. Давление		Решение задач
газа. Молекулярно-		Самостоятельное изучение
кинетический смысл		теоретического материала
температуры. Равномерное		
распределение кинетической		
энергии по степеням свободы.		
Теплоемкость идеальных		
газов и твердых тел.		
Броуновское движение.		
7. Распределение молекул по	Лекции, практические занятия	Изложение теоретического
скоростям. Функции	-	материала (презентация)
распределения Максвелла.		Решение задач
Распределение молекул по		Самостоятельное изучение
абсолютным значениям		теоретического материала
скорости. Характерные		
скорости. Экспериментальная		
проверка распределения		
Максвелла. Столкновения		
молекул со стенкой сосуда.		
8. Молекулы в силовом поле.	Лекции, практические занятия	Изложение теоретического
Барометрическая формула.	-	материала (презентация)
Распределение Больцмана.		Решение задач
Связь распределений		Самостоятельное изучение
Больцмана и Максвелла.		теоретического материала
9. Статистический смысл	Лекции, практические занятия	Изложение теоретического
энтропии. Флуктуации.		материала (презентация)
Зависимость относительной		Решение задач
флуктуации от числа молекул.		Самостоятельное изучение
		теоретического материала
10. Явления переноса в газах.	Лекции, практические занятия	Изложение теоретического
Средняя длина свободного		материала (презентация)
пробега молекул.		Решение задач
Молекулярно-кинетическая		Самостоятельное изучение
оценка коэффициентов		теоретического материала
переноса в газах. Явления в		
разряженных газах.		
12. Фазовые переходы.	Лекции, практические занятия	Изложение теоретического
Системы с переменным		материала (презентация)
числом частиц. Химический		Решение задач
потенциал. Условия		Самостоятельное изучение
равновесия двухфазной		теоретического материала
однокомпонентной системы.		
Уравнение Клайперона-		
Клаузиуса. Фазовые		
диаграммы. Тройная точка.		
Понятие о фазовых переходах		
второго рода.		
13. Граница раздела фаз.	Лекции, практические занятия	Изложение теоретического

Поверхностное натяжение.		материала (презентация)
Формула Лапласа.		Решение задач
Смачивание. Капиллярные		Самостоятельное изучение
явления. Зависимость		теоретического материала
давления насыщенного пара		
от кривизны поверхности		
жидкости. Метастабильные		
состояния.		
14. Твердые тела. Основные	Лекции, практические занятия	Изложение теоретического
свойства кристаллов.		материала (презентация)
Кристаллическая решетка.		Решение задач
Элементы симметрии		Самостоятельное изучение
кристаллов. Дефекты в		теоретического материала
кристаллах.		

IV. Оценочные материалы для проведения текущей и промежуточной аттестации

Форма проведения промежуточного контроля: студенты, освоившие программу курса «Молекулярная физика» могут получить экзамен по итогам семестровой рейтинговой аттестации согласно «Положения о рейтинговой системе обучения в ТвГУ» (протокол №8 от 30 апреля 2020 г.).

Если условия «Положения о рейтинговой системе …» не выполнены, то зачет сдается согласно «Положения о промежуточной аттестации (экзаменах и зачетах) обучающихся по программам высшего образования ТвГУ» (протокол №8 от 30 апреля 2020 г.).

Для проведения текущей и промежуточной аттестации:

- **УК-1.** Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач:
- УК-1.1. Анализирует задачу, выделяя ее базовые составляющие;
- УК-1.5. Рассматривает и предлагает возможные варианты решения поставленной задачи, оценивая их достоинства и недостатки.

Для всех индикаторов один способ аттестации:

Задание: Решить задачу: Постоянная температура $t_1 = 18$ °C в комнате поддерживается электронагревателем мощности N = 500 Вт. Температура воздуха снаружи $t_2 = -21$ °C. Для поддержания в комнате той же температуры можно

использовать вместо электронагревателя тепловой насос (тепловая машина, работающая по холодильному циклу). Какую минимальную мощность N' будет потреблять от электросети тепловой насос, работающий с максимально возможной эффективностью?

Способ аттестации: письменный

Критерии оценки: • Высокий уровень (3 балла по каждому критерию): Понимает физические принципы работы тепловых машин. Может найти формулу для расчета мощности теплового насоса. Получает решение;

Средний уровень (2 балла по каждому критерию): Понимает физику явления, указанного в условии задачи. Знает формулу для расчета мощности. Неуверенно применяет ее, записывая необходимые соотношения. Получает решение;

Низкий уровень (1 балл по каждому критерию): Понимает физику явления, указанного в условии задачи. Знает основные формулы. С трудом применяет их, записывая необходимые соотношения.

ОПК-1. Способен анализировать задачи профессиональной деятельности на основе положений, законов и методов в области математики, естественных и технических наук:

ОПК-1.2. Анализирует физические объекты и процессы используя положения, законы и методы естественных и технических наук;

ОПК-1.3. Осуществляет поиск и анализ информации в рамках поставленной задачи, используя знание положений, законов и методов физики.

Задание:

Классификация фазовых переходов. Фазовые переходы второго рода.

Способ аттестации: письменный.

Критерии оценки: • Высокий уровень (3 балла по каждому критерию): Понимает физику процесса фазового перехода. Может связать порядок перехода с частными производными химического потенциала. Приводит примеры фазовых переходов первого и второго рода;

Средний уровень (2 балла по каждому критерию): Владеет понятием фазового перехода. Знает связь порядка перехода с частными производными химического потенциала.

Низкий уровень (1 балл по каждому критерию): Имеет общие представления о фазовых переходах. Приводит примеры фазовых переходов первого и второго рода.

ОПК-2. Способен формулировать задачи профессиональной деятельности на основе знаний профильных разделов математических, технических и естественнонаучных дисциплин (модулей):

ОПК-2.2. Предлагает возможные варианты решения поставленной задачи, используя положения, законы и методы физики.

Задание: Решите задачу: Напишите выражение для доли (dN/N) молекул газа, кинетические энергии поступательного движения которых при температуре T заключены между ϵ и ϵ + d ϵ . Найдите наивероятнейшее значение этой энергии $\epsilon_{\rm m}$.

Способ аттестации: письменный

Критерии оценки: • Высокий уровень (3 балла по каждому критерию): Понимает математический аппарат квантовой теории, и записывает основные соотношения квантовой механики. Получает правильный ответ;

Средний уровень (2 балла по каждому критерию): Понимает математический аппарат квантовой теории, но неуверенно записывает основные соотношения квантовой механики. Получает правильный ответ;

Низкий уровень (1 балл по каждому критерию): Понимает математический аппарат квантовой теории, и с трудом записывает основные соотношения квантовой механики. Получает неправильный ответ.

V. Учебно-методическое и информационное обеспечение дисциплины

1) Рекомендуемая литература

- а) Основная литература:
- 1. Савельев И. В. Курс общей физики. Т. 3 : **Молекулярная физика** и термодинамика. 5-е изд. Санкт-Петербург : Лань, 2021. 224 с. ISBN 978-5-8114-1209-9. https://e.lanbook.com/book/167871
- 2. Телеснин В. Р. **Молекулярная физика** [Электронный ресурс] 3-е изд., стер. Санкт-Петербург : Лань, 2021. 368 с. ISBN 978-5-8114-1002-6 https://e.lanbook.com/book/167783
- Фриш С. Э. Курс общей физики. Т. 1 : Физические основы механики. Молекулярная физика. Колебания и волны 13-е изд. Санкт-Петербург : Лань, 2021. 480 с. ISBN 978-5-8114-0663-0. Режим доступа: https://e.lanbook.com/book/167787
- 4. Кикоин А. К. **Молекулярная физика** [Электронный ресурс] 4-е изд., стер. Санкт-Петербург : Лань, 2021. 480 с. ISBN 978-5-8114-0737-8 https://e.lanbook.com/book/167687
- 5. Кудин Л. С. Курс общей физики (в вопросах и задачах) [Электронный ресурс] 2-е изд., испр. и доп. Санкт-Петербург : Лань, 2021. 320 с. ISBN 978-5-8114-1372-0 https://e.lanbook.com/book/168513
- 6. Прошкин С. С. Механика, термодинамика и молекулярная физика. Сборник задач: Учебное пособие для вузов 2-е изд. Электрон. дан. Москва : Юрайт, 2021. 467 с. (Высшее образование). URL: https://urait.ru/bcode/472157
- 7. Миронова Г. А. **Молекулярная физика** и термодинамика в вопросах и задачах [Электронный ресурс] Санкт-Петербург : Лань, 2021. 480 с. - ISBN 978-5-8114-1195-5 https://e.lanbook.com/book/168403
- 8. Трофимова Т. И. Руководство к решению задач по физике : Учебное пособие для вузов. 3-е изд. Электрон. дан. Москва : Юрайт, 2021. 265 с. (Высшее образование). URL: https://urait.ru/bcode/468399
 - 2) Программное обеспечение
 - а) Лицензионное программное обеспечение

- б) Свободно распространяемое программное обеспечение
- 3) Современные профессиональные базы данных и информационные справочные системы
- 1. Научная библиотека ТвГУ: http://library.tversu.ru/
- 2. Электронная библиотека издательства Лань: http://e.lanbook.com/
- 3. *ЭБС«*ZNANIUM.*COM» www.znanium.com*;
- 4. ЭБС «Университетская библиотека онлайн» https://biblioclub.ru;
- 5. Сайт издательского дома ЮРАЙТ: http://www.biblio-online.ru/
- 4) Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

VI. Методические материалы для обучающихся по освоению дисциплины

– планы практических (семинарских) занятий:

Семинар 1: Решение задач на тему «Уравнение состояния термодинамической системы. Уравнение Клапейрона-Менделеева».

Примеры задач:

- 1. Атмосфера Венеры почти полностью состоит из углекислого газа. Температура у поверхности планеты около t = 500 °C, а давление около p = 100 атм. Какой объем должен иметь исследовательский зонд массой m=1т, чтобы плавать в нижних слоях атмосферы Венеры?
- 2. Определите наименьшее возможное давление идеального газа в процессе, при котором $T = T_0 + \alpha V^2$, где T_0 и α положительные постоянные, V объем моля газа.

Семинар 2: Решение задач на тему «Первое начало термодинамики. Применение первого закона термодинамики к процессам в идеальном газе»

- 1. Нагревается или охлаждается идеальный газ, если он расширяется по закону $PV^2 = const$? Какова его молярная теплоемкость в этом процессе?
- 2. Идеальный газ сжимается под поршнем в цилиндре так, что уходящее в окружающую среду тепло равно изменению внутренней энергии газа. Определите работу, затраченную на сжатие одного моля газа при изменении объема в два раза. Чему равна теплоемкость в этом процессе? Начальная температура газа равна T_0 .

Семинар 3: Решение задач на тему «Циклы. Тепловые и холодильные машины».

Примеры задач:

- 1. На рисунке изображен обратимый цикл, выполняемый молем идеального газа в некоторой тепловой машине. Найдите работы A_{ij} , выполняемые машиной на каждом этапе цикла; количества тепла Q_{ij} , получаемые газом на каждом этапе и КПД цикла, выразив его как функцию температур T_1 , T_2 , T_3 . Процесс 31 адиабатический.
- 2. Один моль идеального одноатомного газа ($C_V = 3R/2$), занимающего объем V_1 при давлении P_1 , расширяется при постоянном давлении до объема $2V_1$, потом сжимается в политропическом процессе до объема $V_1/2$ и давления $P_1/4$, затем изотермически расширяется до исходного объема V_1 . Цикл завершается повышением давления при постоянном объеме. Найдите КПД цикла.

Семинар 4: Решение задач на тему: «Второй закон термодинамики. Равенство Клаузиуса. Энтропия. Закон возрастания энтропии».

- 1. Вычислите изменения внутренней энергии и энтропии одного моля идеального газа при расширении по политропе $PV^n = const$ от объема V_1 до объема V_2 . Рассмотрите частные случаи изотермического и адиабатического процессов.
- 2. При очень низких температурах теплоемкость кристаллов $C = \alpha T^3$, где α постоянная. Найдите энтропию кристалла как функцию температуры в этой области.

Семинар 5: Решение задач на тему: «Теплопроводность. Стационарные задачи теплопроводности. Выравнивание температур».

Примеры задач:

- 1. Найдите распределение температуры в пространстве между двумя концентрическими сферами с радиусами R_1 и R_2 , заполненном проводящим тепло однородным веществом, если температуры сфер равны T_1 и T_2 .
- 2. По однородному цилиндрическому проводу радиуса R без изоляции течет постоянный электрический ток J. Определите стационарное распределение температуры в проводе, если его поверхность поддерживается при постоянной температуре T_0 . Коэффициент теплопроводности провода κ , удельное сопротивление ρ можно считать не зависящим от температуры.

Семинар 6: Решение задач на тему: «Модель идеального газа. Давление газа. Молекулярно-кинетический смысл температуры. Теплоемкость идеальных газов и твердых тел».

Примеры задач:

- 1. Вакуумные насосы позволяют получать давления до $P = 4 \cdot 10^{-10} \, \text{Па}$ (при комнатной температуре). Найдите число молекул газа $n \, B \, 1 \, cm^3$ и среднее расстояние $r \, meжду$ ними при этом давлении.
- 2. Какова будет средняя кинетическая энергия вращательного движения молекулы водорода, если первоначально он находился при нормальных условиях, а затем был адиабатически сжат в 32 раза?

Семинар 7: Решение задач на тему: «Распределение молекул по скоростям. Функции распределения Максвелла».

- 1. Найдите для азота при $T=300~{\rm K}$ отношение числа молекул dN_1 с компонентами скорости вдоль оси x в интервале $300\pm0,31~{\rm m/c}$ к числу молекул dN_2 с компонентами скорости в интервале $500\pm0,51~{\rm m/c}$.
- 2. Найдите долю молекул α_1 , компоненты скорости которых, параллельные некоторой оси, лежат в интервале ($\upsilon_{//}$, $\upsilon_{//}$ + $d\upsilon_{//}$), а модули перпендикулярной

составляющей скорости заключены между υ_{\perp} и $\upsilon_{\perp} + d\upsilon_{\perp}$. Какая часть молекул α_2 удовлетворяет только второму условию?

Семинар 8: Решение задач на тему: «Распределение молекул по абсолютным значениям скорости. Характерные скорости.

Примеры задач:

- Найдите <1/υ> − среднее значение обратной скорости молекул идеального газа при температуре Т, если масса каждой молекулы равна т.
 Сравните полученную величину с обратной величиной средней скорости.
- 2. Напишите выражение для доли (dN/N) молекул газа, кинетические энергии поступательного движения которых при температуре T заключены между ε и ε + d ε . Найдите наивероятнейшее значение этой энергии $\varepsilon_{\rm m}$.

Семинар 9: Решение задач на тему: « Столкновения молекул со стенкой сосуда».

Примеры задач:

- 1. В тонкостенном сосуде объема V, стенки которого поддерживаются при постоянной температуре, находится идеальный газ. Сосуд помещен в вакуум. Как будет меняться с течением времени концентрация молекул n газа внутри сосуда, если в его стенке сделать очень малое отверстие площади S. Определите время $t_{1/2}$, по истечении которого давление газа внутри сосуда уменьшится в два раза. Начальная концентрация n_0 .
- 2. В тонкостенном сосуде, помещенном в вакууме, имеется очень малое отверстие, на которое извне направляется параллельный пучок одноатомных молекул, летящих с одной и той же скоростью υ_0 , перпендикулярной площади отверстия. Концентрация молекул в пучке равна n_0 . Найдите среднюю скорость $\langle \upsilon \rangle$, концентрацию молекул n и температуру T газа в сосуде в установившемся равновесном состоянии.

Семинар 10: Решение задач на тему: «Распределение Больцмана. Связь распределений Больцмана и Максвелла».

- 1. Азот находится в очень высоком сосуде в однородном поле тяжести при температуре T. Температуру увеличили в η раз. На какой высоте h концентрация молекул азота осталась прежней?
- 2. Цилиндр радиуса R и высоты H, содержащий идеальный газ, равномерно вращается в однородном поле тяжести вокруг своей геометрической оси с угловой скоростью ω . Найдите распределение концентрации молекул газа n(r,z) внутри цилиндра, если его ось направлена вертикально. Масса одной молекулы m, полное число молекул N.

Семинар 11: Решение задач на тему: «Реальные газы. Уравнение Ван-дер-Ваальса. Внутренняя энергия реального газа».

Примеры задач:

- 1. Найдите выражение для изотермической сжимаемости γ_T и коэффициента объемного расширения α газа Ван-дер-Ваальса.
- 2. Моль азота расширяется в пустоту от начального объема $V_1 = 1$ л до конечного $V_2 = 10$ л. Найдите понижение температуры ΔT при таком процессе, если постоянная а в уравнении Ван-дер-Ваальса для азота равна $1,35\cdot10^6$ атм·см 6 /моль 2 .

Семинар 12: Решение задач на тему: «Эффект Джоуля-Томсона» Примеры задач:

- 1. Найдите изменение энтропии в процессе Джоуля-Томсона.
- 2. Покажите, что газ, подчиняющийся уравнению Ван-дер-Ваальса, с a=0 в опыте Джоуля Томсона всегда нагревается, а с b=0 всегда охлаждается. Выразите ΔT через ΔP , считая, что $|\Delta P|$ << P.

Семинар 13: Решение задач на тему: «Граница раздела фаз. Поверхностное натяжение.».

Примеры задач:

1. Как велико поверхностное натяжение σ жидкости, если петля из резинового шнура длиной L с поперечным сечением S, положенная на пленку этой жидкости, растянулась в окружность радиуса R после того, как пленка была

проколота внутри петли? Считайте, что при малых растяжениях для резины справедлив закон Гука, и модуль Юнга резины равен Е.

2. Капля несжимаемой жидкости совершает пульсационные колебания, становясь последовательно вытянутой, сферической, сплюснутой, сферической, снова вытянутой и т.д. Как зависит период этих пульсаций T от плотности ρ , поверхностного натяжения σ и радиуса капли r?

Семинар 14: Решение задач на тему: «Формула Лапласа. Капиллярные явления. Зависимость давления насыщенного пара от кривизны поверхности жидкости».

- 1. Какова разность уровней жидкости в двух сообщающихся капиллярах с диаметрами d_1 и d_2 ? Поверхностное натяжение жидкости равно σ . Краевые углы менисков равны нулю. Плотность жидкости равна ρ .
- 2. Грамм ртути помещен между двумя плоскими стеклянными пластинками. Какую силу F надо приложить к верхней пластинке, чтобы ртуть приняла форму круглой лепешки однородной толщины и радиуса R=5 см. Поверхностное натяжение ртути (при 15 °C) $\sigma=487$ дин/см, краевой угол между ртутью и стеклом $\theta=140$ °.
 - сборники задач:
- 1. «Сборник задач по общему курсу физики». Часть 2. Термодинамика и молекулярная физика. Под ред. Д.В. Сивухина. М.: Физматлит, 2006.
- 2. «Сборник задач по общему курсу физики». Часть 1. Механика. Термодинамика и молекулярная физика. Под ред. В.А. Овчинкина. М.: Изд–во МФТИ, 2004
- 3. Иродов И.Е. «Задачи по общей физике». М.: ЗАО «Издательство БИНОМ», 1998.
- методические рекомендации по организации самостоятельной работы студентов:
 - 1. Изучить рекомендуемую литературу.
 - 2. Просмотреть задачи, разобранные на аудиторных занятиях.

- 3. Разобрать задачи, рекомендованные преподавателем для самостоятельного решения, используя, при необходимости, примеры решения аналогичных задач.
- 4. Обсудить проблемы, возникшие при решении задач с преподавателем.

Требования к рейтинг-контролю. В течение семестра два раза (на модульных неделях) необходимо:

- 1) сдать преподавателю решения домашних задач, полученных из указанных сборников задач,
- ответить на теоретические вопросы. Примеры вопросов:
 Модуль 1
- 1. Типы термодинамических систем. Термодинамическое равновесие. Температура.
- 2. Параметры состояния термодинамических систем. Уравнение состояния.
- 3. Первое начало термодинамики.
- 4. Первое начало термодинамики для идеальных газов.
- 5. Адиабатический процесс. Уравнение Пуассона.
- 6. Связь модулей объемной упругости с теплоемкостями.
- 7. Циклы. Тепловые и холодильные машины.
- 8. Цикл Карно. КПД цикла Карно для идеального газа.
- 9. Второе начало термодинамики. Постулаты Томсона и Клаузиуса.
- 10. Обратимые и необратимые процессы. Теорема Карно.
- 11. Термодинамическая шкала температур.
- 12. Уравнение Клапейрона Клаузиуса (пример использования теоремы Карно).
- 13. Равенство Клаузиуса. Энтропия.
- 14. Процессы на Т-Ѕ диаграмме.
- 15. Неравенство Клаузиуса. Закон возрастания энтропии.
- 16. Термодинамические функции.
- 17. Примеры применения метода термодинамических функций $[(\partial U/\partial V)_T, (\partial H/\partial P)_T, C_P-C_V].$
- 18. Третье начало термодинамики (теорема Нернста).

- 19. Эффект Джоуля Томсона.
- 20. Системы с переменным числом частиц. Химический потенциал.
- 21. Критерии равновесия термодинамических систем.
- 22. Условия равновесия 2-х фазной однокомпонентной системы.

Модуль 2

- 1. Теплопроводность. Уравнение теплопроводности.
- 2. Простейшие стационарные задачи теории теплопроводности.
- 3. Выравнивание температур. Внешняя теплопередача.
- 4. Межмолекулярные взаимодействия. Модель идеального газа.
- 5. Молекулярно-кинетический смысл температуры. Равномерное распределение кинетической энергии по степеням свободы.
- 6. Теплоемкости идеальных газов и твердых тел.
- 7. Броуновское движение.
- 8. Распределение молекул по скоростям (распределение Максвелла).
- 9. Распределение молекул по абсолютным значениям скорости. Характерные скорости.
- 10. Столкновения молекул со стенкой сосуда.
- 11. Экспериментальная проверка закона распределения скоростей Максвелла.
- 12. Распределение Больцмана.
- 13. Опыты Перрена по определению числа Авогадро.
- 14. Статистический смысл энтропии.
- 15. Флуктуации.
- 16. Флуктуации концентрации. Биномиальное распределение. Распределение Пуассона.
- 17. Процессы переноса в газах. Теплопроводность, вязкость, диффузия.
- 18. Столкновения молекул. Средняя длина свободного пробега молекул в газах.
- 19. Молекулярно-кинетическая оценка коэффициентов переноса в газах.
- 20. Реальные газы. Уравнение Ван-дер-Ваальса. Внутренняя энергия газа Ван-дер-Ваальса.
- 21. Эффект Джоуля-Томсона для газа Ван-дер-Ваальса.

- 22. Изотермы реального газа. Критическая точка.
- 23. Зависимость давления насыщенного пара от температуры. Диаграммы состояния.
- 24. Граница раздела фаз. Поверхностное натяжение.
- 25. Разность давлений на искривлённой межфазной границе. Формула Лапласа.
- 26. Краевые углы. Смачивание. Капиллярные явления.
- 27. Зависимость давления насыщенного пара от кривизны поверхности жидкости. Метастабильные состояния.
- 28. Классификация фазовых переходов. Фазовые переходы второго рода.

VII. Материально-техническое обеспечение

Наименование специальных* помещений	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения. Реквизиты подтверждающего документа
Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации Лекционная аудитория № 228 (170002 Тверская обл., г. Тверь, Садовый пер., д. 35)	1. Мультимедийный проектор Casio XJ-H2650 с потол. крепл. 2. Экран Screen Media 3. Ноутбук (переносной) 4. Комплект учебной мебели на 68 посадочных мест 5. Меловая доска	Місгоsoft Windows 10 Enterprise - Акт на передачу прав №1051 от 05.08.2020 г. MS Office 365 pro plus - Акт на передачу прав №1051 от 05.08.2020 г. Асговат Reader DC - бесплатно Google Chrome — бесплатно
Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и	1 Микшерный пульт Yamaha MG-124C 2 Аудиокомплект (мик. пульт, акуст. усилитель, акуст. система, радиосистема) 3 Интерактивная система SMART Board 660i4 4 Мультимедийный проектор Epson EB-4850WU с потолочным креплением 5 Телекоммуникационный	Каspersky Endpoint Security 10 для Windows — Акт на передачу прав №1842 30.11.2020. MS Office 365 pro plus - Акт на передачу прав №1051 от 05.08.2020 г. Місгоsoft Windows 10 Enterprise - Акт на передачу прав №1051 от 05.08.2020 г. Місгоsoft Visual Studio 2019

промежуточной	шкаф ШТК-М-18.6.6-3ААА с	- Акт на передачу прав
аттестации,	полками	№1051 от 05.08.2020 г.
Лекционная аудитория	6 Телекоммуникационный	Mozilla Firefox -бесплатно
№ 226 (170002 Тверская	шкаф ШТК-М-18.6.6-3ААА с	
обл., г. Тверь, Садовый	полками	
пер., д. 35)	7 Экран настенный Lumien	
	8 Компьютер iRU Corp 510 15-	
	2400/4096/500/G210-512/DVD-	
	RW/W7S/монитор E-Machines	
	E220HQVB 21,5''	
	9 Комплект учебной мебели на	
	110 посадочных мест	
	10 Меловая доска	

VIII. Сведения об обновлении рабочей программы дисциплины

№ п.п.	Обновленный раздел	Описание внесенных	Реквизиты документа,
	рабочей программы	изменений	утвердившего
	дисциплины		изменения
1.	Титульный лист	Смена руководителя ООП	Протокол совета ФТФ
			№ 4 от 9.11.2021 г.
2.			
3.			