Документ подписан простой электронной подписью

Информация о владельце: Министерство образования и науки Российской Федерации

ФИО: Смирнов Сергей Николаевич

Должность: врио ректор едеральное государственное бюджетное образовательное учреждение

Дата подписания: 13.09.2022 14:54:0

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

высшего образования

«Тверской государственный университет»

Физико-технический факультет

Рабочая программа дисциплины (с аннотацией)

Микромагнетизм

Квалификация

Исследователь. Преподаватель-исследователь

Направление подготовки

03.06.01 ФИЗИКА И АСТРОНОМИЯ

специальность

01.04.11 – Физика магнитных явлений

Для аспирантов 2 года обучения

Составитель: д.ф-м.н., профессор Пастушенков Ю.Г.

І. Аннотация

1. Наименование дисциплины (или модуля) в соответствии с учебным планом

«Микромагнетизм».

2. Цель и задачи дисциплины (или модуля)

Целью изучения дисциплины «Микромагнетизм» является освоение одного из наиболее эффективных современных методов анализа структурно-чувствительных характеристик магнитных материалов, позволяющего выполнять анализ природы высококоэрцитивного состояния магнитных материалов и целенаправленно формировать заданные свойства новых функциональных материалов.

Задачей освоения дисциплины является овладение знаниями, умениями и навыками в рамках микромагнитного подхода к решению актуальных практических задач физики магнитных явлений.

3. Место дисциплины в структуре образовательной программы

Дисциплина является дисциплиной по выбору вариативной части направления подготовки 03.06.01 — Физика и Астрономия, направленность 01.04.01 — Физика магнитных явлений. Дисциплина изучается на втором году обучения и имеет логические и содержательно — методические взаимосвязи с обязательными дисциплинами и дисциплинами по выбору вариативной части ООП. Для освоения дисциплины от слушателей требуются предварительные знания и навыки из курсов направления подготовки магистратуры 03.04.02 «Физика» Дисциплина «Микромагнетизм» подготавливает аспирантов к сдаче кандидатского минимума по специальности.

4. Общая трудоемкость дисциплины составляет 3 зач. ед., 108 академических часов, в том числе контактная работа: Лекции 4 час., практические занятия — 4 час, самостоятельная работа 100 часов.

5. Планируемые результаты обучения по дисциплине

Планируемые	Планируемые результаты обучения по дисциплине
результаты освоения	
образовательной	
программы	
(Формируемые	
компетенции)	

ОПК-1	Владеть: информационными технологиями, с помощью которых
способность	возможно получение новых знаний, необходимых для
самостоятельно	коммуникации в научной и производственной сферах
осуществлять научно-	деятельности.
исследовательскую	Уметь использовать знания современных проблем физики
деятельность в	конденсированного состояния и ее новейших достижений в
соответствующей	своей научно-исследовательской деятельности, оценивать и
профессиональной	выбирать материал с соответствующими физическими
области с	характеристиками, необходимыми для решения технических и
использованием	научно-исследовательских задач физики конденсированного
современных методов исследования и	состояния.
информационно-	
коммуникационных	Знать: основы построения научных статей и научно-технической
технологий	документации
ПК-1	Владеть постановкой научной задачи физики конденсированного
	состояния и умением решать их с помощью современной аппаратуры
способность	и зарубежного опыта.
самостоятельно ставить	Знать основные понятия и теоретические основы физики
научные задачи в области физики и	1
решать их с	конденсированного состояния, современное состояние научных
использованием	исследований в данной области.
современного	
оборудования и	
новейшего	
отечественного и	
зарубежного опыта	

6. Форма промежуточной аттестации зачет

7. Язык преподавания русский.

П. Структура дисциплины

1. Структура дисциплины для студентов очной и заочной формы обучения

Учебная программа –	Всего	Лекции	Практические	Само
наименование разделов и тем	(час.)		занятия	стоят
				ельна
				Я
				работ
				a
				(час.)
1.История возникновения	108	4	4	100
микромагнитного подхода в теории				
магнетизма. Терминология, предмет				
исследования, основные направления,				
микромагнитные задачи.				
2.Постановка задачи микромагнетизма.				
Уравнения Брауна.				
3. Линеаризованные уравнения Брауна.				
Применение линеаризованных				
уравнений. Анализ процесса				
перемагничивания цилиндрических				
ферромагнитных частиц.				
4. Магнитная доменная структура. Задача				
о доменной границе. Типы доменных				
границ. Основные микромагнитные				
параметры магнетиков.				
5. Магнитная структура мелких				
ферромагнитных частиц. Однодоменное				
состояние. Понятие абсолютной				
однодоменности.				
6.Микромагнитное описание петель				
гистерезиса. Петли гистерезиса				
материалов с задержкой образования и				
роста доменов обратного знака и с				
задержкой смещения доменных границ,				
сравнение результатов расчетов с				
экспериментом.				
7.Микромагнитное описание				
гистерезисных свойств новых				
функциональных материалов, в том				
числе наноструктурных и				
композиционных.				
итого:	108	4	4	100
HIOIO.	100	*	4	100

Ш. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

- Вопросы зачету.

IV. Фонды оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Контроль сформированности компетенции осуществляется с помощью оценочных средств на основе критериев, которые разрабатываются с целью выявления соответствия этапов освоения компетенции планируемым результатам обучения (см. карту компетенций).

1. Типовые контрольные задания для проверки уровня сформированности компетенции ОПК-1 «Способность самостоятельно осуществлять научно-исследовательскую деятельность в соответствующей профессиональной области с использованием современных методов исследования и информационно-коммуникационных технологий».

Этап формирования	Типовые контрольные	Показатели и	
компетенции, в котором	задания для оценки знаний,	критерии оценивания	
участвует дисциплина	умений, навыков (2-3	компетенции, шкала	
	примера)	оценивания	
Владеть: информационными технологиями, с помощью которых возможно получение новых знаний, необходимых для коммуникации в научной и производственной сферах деятельности. Уметь использовать знания современных проблем физики магнитных явлений и ее новейших достижений в своей научно-исследовательской деятельности, оценивать и выбирать материал с соответствующими физическими характеристиками, необходимыми для решения технических и научноисследовательских задач физики магнитных явлений. Знать: основы построения научных статей и научнотехнической документации	1. Доменная граница Блоха. 2. Микромагнитное описание петель гистерезиса.	 Тема актуальна и сформулирована грамотно — 1 балл; корректно использован понятийный аппарат; продемонстрирован большой лексический запас, логичность и ясность изложения — 2 балла; использованы публикации последних лет — 1 балл; определена позиция автора; предложен и аргументирован собственный взгляд на проблему — 2 балл; 	

1. Типовые контрольные задания для проверки уровня сформированности компетенции ПК-1 «Способность самостоятельно ставить научные задачи в области физики и решать их с использованием современного оборудования и новейшего отечественного и зарубежного опыта».

Этап формирования компетенции, в котором	Типовые контрольные задания для оценки знаний, умений,	Показатели и критерии оценивания компетенции,
участвует дисциплина	навыков (2-3 примера)	шкала оценивания
промежуточный Владеть постановкой научных задач физики магнитных явлений и умением решать их с помощью современной аппаратуры и зарубежного опыта. Знать: основные понятия и теоретические основы физики магнитных явлений, современное состояние научных исследований в данной области.	 Однодоменное состояние. Поняте абсолютной однодоменности. Теоретический предел энергетического произведения постоянного магнита. 	 Тема актуальна и сформулирована грамотно – 1 балл; корректно использован понятийный аппарат; продемонстрирован большой лексический запас, логичность и ясность изложения – 2 балла; использованы публикации последних лет – 1 балл; определена позиция автора; предложен и аргументирован собственный взгляд на проблему – 2 балл;

V. Перечень основной и дополнительной литературы, необходимой для освоения дисциплины

- а) основная литература:
- 1. Пиралишвили, Ш.А. Электричество и магнетизм [Электронный ресурс]: учеб. пособие / Ш.А. Пиралишвили, Е.В. Шалагина, Н.А. Каляева, Е.А. Попкова. Электрон. дан. Санкт-Петербург: Лань, 2017. 160 с. Режим доступа: https://e.lanbook.com/book/91880
 - б) дополнительная литература
- 1. Соболева В.В. Электричество и магнетизм. Колебания [Электронный ресурс]: учебнометодическое пособие к решению задач и выполнению контрольных работ по физике / В.В. Соболева. Электрон. текстовые данные. Астрахань: Астраханский инженерностроительный институт, ЭБС АСВ, 2011. 115 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/17074.html

VI. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины

- 1) журнал «Физика твердого тела» http://journals.ioffe.ru/journals/1
- 2) свойства материалов http://materials.springer.com/

VII. Методические указания для обучающихся по освоению дисциплины

Вопросы к зачету по специальности 01.04.11 – Физика магнитных явлений

1. Общие понятия

Магнетизм. Магнитное поле. Магнитный момент. Векторы магнитной индукции,

намагниченности, напряженности магнитного поля. Магнитный поток. Магнитный заряд. Магнитный диполь.

2. Магнитные структуры и типы магнетиков

Упорядоченные магнитные структуры. Магнитная структура. Магнитная подрешетка. Ферромагнитная структура. Антиферромагнитная структура. Слабый ферромагнетизм. Ферримагнитная структура. Спиральная магнитная структура. Магнитная ячейка. Магнитная нейтронография.

Неупорядоченные магнитные структуры. Спиновое стекло.

3. Магнитные взаимодействия

Обменное взаимодействие и его энергия. Косвенное обменное взаимодействие. Спин-орбитальное взаимодействие. Магнитное дипольное взаимодействие. Сверхтонкое взаимодействие.

4. Магнитная анизотропия

Энергия магнитной анизотропии. Константы магнитной анизотропии. Эффективное магнитное поле анизотропии. Оси магнитной анизотропии. Плоскости легкого и трудного намагничивания. Магнитная анизотропии типа "легкая ось", "легкая плоскость". Наведенная магнитная анизотропия.

5. Магнитоупругие явления

Магнитострикция. Магнитоупругая энергия. Магнитоупругие постоянные. Константы магнитострикции. Магнитоупругие волны. Магнитоупругое затухание.

6. Кинетические явления

Гальваномагнитные эффекты. Эффекты Холла. Магниторезистивные эффекты. Гальванотермомагнитные эффекты. Термомагнитные эффекты.

7. Домены и доменные границы

Магнитный домен. Доменная граница (Блоха, Нееля). Доменная структура. Полосовая и лабиринтная доменные структуры. Цилиндрический магнитный домен. Решетка ЦМД.

8. Процессы намагничивания, перемагничивания и размагничивания

Внешнее магнитное поле. Намагничивание. Гистерезис намагничивания. Эффект Баркгаузена. Магнитное насыщение. Подвижность и эффективная масса доменной границы. Перемагничивание. Коэрцитивная сила. Петля магнитного гистерезиса. Магнитные восприимчивость и проницаемость. Размагничивание переменным полем, нагревом. Размагничивающее и внутреннее магнитное поле.

9. Магнитные фазовые переходы и критические явления

Фазовый переход. Переходы первого и второго рода. Диаграмма состояний. Критическая температура. Температура Кюри. Температура Нееля.

10. Спиновые волны

Ферромагнитный резонанс. Магнитостатические моды. Спиновые волны. Спинволновой резонанс.

11. Магнитооптика

Магнитооптические эффекты: эффект Фарадея, эффект Коттона-Мутона, Эффект Керра. Фотомагнитные эффекты. Гиромагнитная среда.

12. Характеристики магнитных материалов

Магнитно-мягкий материал. Магнитно-твердый материал. Магнитный материал с прямоугольной петлей гистерезиса. Сверхвысокочастотный магнитный материал.

Магнитный материал для постоянных магнитов. Магнитный материал для носителей записи. Материал с цилиндрическими магнитными доменами. Магнитострикционный материал. Материал для термомагнитной записи информации. Текстурированный магнитный материал.

13. Магнитные материалы

Феррит-гранат. Феррит-шпинель. Ортоферрит. Гексаферрит. Пермаллой.

14. Параметры магнитных материалов

Магнитные потери. Магнитные потери на гистерезис. Магнитные потери на вихревые токи. Магнитное сопротивление. Время и скорость перемагничивания. Коэффициент прямоугольности петли магнитного гистерезиса.

VIII. Перечень педагогических и информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (по необходимости)

Процесс обучения включает аудиторные занятия путем проведения лекционных и семинарских занятий, групповые и индивидуальные консультации, текущий контроль полученных знаний, использование различных форм научно-исследовательской деятельности, самостоятельную работу, а так же проведение итогового контроля.

Выработка профессиональных навыков и умений предполагает широкое использование в ходе образовательного процесса интерактивных методик обучения. Использование активных методов обучения имеет целью конструктивное вовлечение аспирантов в учебный процесс, активизацию учебно-познавательной деятельности. Активные методы обучения предполагают деловое сотрудничество, взаимодействие, обмен информацией, более глубокое усвоение материала, понимание сущности изучаемых явлений, и как результат — получение соответствующих знаний, умений и навыков, формирование компетенций.

IX. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Лекционная аудитория должна быть оборудована мультимедийными средствами обучения.

Х. Сведения об обновлении рабочей программы дисциплины

№п.п.	Обновленный раздел	Описание	Дата и протокол
	рабочей программы	внесенных изменений	заседания кафедры,
	дисциплины		утвердившего изменения
1.			
2.			
3.			
4.			