Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Смирнов Сергей Николаевич

Должность: врио ректора Дата подписания: 23.0 **Министер**ство науки и высшего образования Российской Федерации

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc ФББФУ ВО «Тверской государственный университет»

Утверждаю:

Руководитель ООП

О.Н. Медведева

июня 2022 г.

Korp

Рабочая программа дисциплины (с аннотацией)

Методы физических измерений

Направление подготовки 27.03.05 Инноватика

профиль

Управление инновациями (по отраслям и сферам экономики)

Для студентов 2 курса, очной формы обучения

Составитель: к.ф.-м.н., доцент Карпенков А.Ю.

Тверь, 2022

І. Аннотация

1. Цель и задачи дисциплины

Целью освоения дисциплины является:

Формирование у обучающихся способности грамотного построения алгоритма выполнения поставленной учебной, лабораторной или научной задачи.

Задачами освоения дисциплины являются:

- ознакомление студентов с основами метрологии, видами, методами и средствами измерения физических величин (электрических, магнитных и т.п.), способами оценки достоверности полученных экспериментальных результатов.
- получение студентами практических навыков в планирования и проведения эксперимента, обеспечивающего выбранную точность получения измерительной информации путем анализа методики определения физической величины и характеристик используемого оборудования.

2. Место дисциплины в структуре ООП

Дисциплина «Методы физических измерений» изучается в модуле Физикохимические основы материалов, технологий, устройств Блока 1. Дисциплины части учебного плана, формируемой участниками образовательных отношений.

Содержательно она дает знания об истории развития и основных понятиях науки метрологии, видах, методах и средствах измерения физических величин. Развивает практические навыки оценки достоверности экспериментально полученной измерительной информации о свойствах физических объектов, изучаемых в естественнонаучном и профессиональном циклах. Для успешного освоения дисциплины нужны знания из дисциплин модулей «Общая физика» и «Математика».

Дисциплина «Методы физических измерений» закладывает основы для изучения таких дисциплин как «Метрология, стандартизация и сертификация», «Электротехника и электроника», Элективные дисциплин 2-5, а также прохождения практик и выполнения выпускной квалификационной работы.

3. Объем дисциплины: $\underline{3}$ зачетные единицы, $\underline{108}$ академических часов, **втом числе**:

контактная аудиторная работа: лекции <u>32</u> часа, лабораторные работы 16часов;

самостоятельная работа: 60 часов.

4. Планируемые результаты обучения по дисциплине, соотнесенные спланируемыми результатами освоения образовательной программы

Планируемые результаты	Планируемые результаты обучения по
освоенияобразовательной	дисциплине
программы	
(формируемые компетенции)	
УК-1. Способен осуществлять поиск,	УК-1.5. Рассматривает и предлагает
критический анализ и синтез информации,	возможные варианты решения
применять системный подход для	поставленной задачи, оценивая их
решения	достоинства и недостатки.
поставленных задач.	
ПК-1. Способен выполнять	ПК-1.1. Осуществляет постановку
анализрезультатов	задачи на
технологических	технологические исследования.
исследований продуктов.	
ПК-2. Способен оказать информационную	ПК-2.2. Анализирует информацию для
поддержку	определения уровня научно-технического
специалистам	развития организации, создаваемого
,осуществляющим научно-	объекта.
исследовательские, опытно-	
конструкторские и технологические работы.	

5. Форма промежуточной аттестации и семестр прохождения Зачет в 4 семестре.

6. Язык преподавания: русский.

П. Содержание дисциплины, структурированное по темам с указанием отведенного на них количества академических часов и видов учебных занятий

1. Для студентов очной формы обучения

		Контактн	ная работа (час.)	Самостоят
Uауманараума парианар и там	Всего		Практические	ельная
Наименование разделов и тем	(час.)	Лекции	(лабораторные)	работа
			работы	(час.)
1. Метрология – наука об измерениях.				4
1.1. Предмет, задачи и средства метрологии.		1		
Краткая история развития метрологии.				
Основные понятия метрологии (измерение,				
физические свойства и величины).				
1.2. Виды измерений физических величин				
(прямые, косвенные, совокупные и		2		
совместные измерения физических				
величин).				
1.3. Методы измерения физических величин				
(метод непосредственной оценки, методы		1		
сравнения).				
2. Основные понятия теории				
погрешностей				4
2.1. Классификация погрешностей.				
Основные понятия. Классификация		2		
погрешностей по способу выражения				
(абсолютная, относительная и приведенная				
погрешности), по источнику возникновения				
(инструментальная, методическая и				
субъективная), по характеру проявления				
(систематическая, случайная,				
прогрессирующая, ошибки первого и				
второго рода).				
2.2. Погрешность и неопределенность.				
2.3. Правила округления погрешностей и		1		
результатов измерений.		1		
3. Оценка погрешности измерения				
физической величины				4
3.1. Систематическая погрешность. Виды				
систематической погрешности (по		1		
причинам возникновения, по характеру				
измерения). Методы устранения				
постоянных, переменных и монотонно				
изменяющихся систематических				
погрешностей.				
3.2. Оценка величины случайных		_		
погрешностей. Доверительный интервал,		2		
доверительная вероятность. Оценка				
результата измерения. Оценка величины				
случайных погрешностей. Определение				
величины случайной погрешности в				

V			
реальных условиях. Учет систематических			
и случайных ошибок.			
3.3. Ошибки косвенных измерений	1		
(систематические и случайные ошибки).	1		
4. Минимизация погрешности измерения	1		_
физических величин	1		2
4.1. О точности вычислений.			
4.2. Погрешность определения			
погрешности.			
4.3. Необходимое число измерений.			4
5. Средства электрических измерений	4		4
5.1. Классификация. Погрешности, способы	4		
их выражения и нормирования. Классы			
точности.			4
6. Измерительные преобразователи	1		4
6.1. Основные понятия и определения.	1		
Классификация и общие свойства.	2		
6.2. Гальваномагнитные преобразователи.	2		
6.3. Индукционные преобразователи.	2 2 2		
6.4. Магнитомеханические, кинетические,	2		
квантовые, магнитооптические,			
термоэлектрические.			2
7. Методы измерения электрических			2
Величин	2		
7.1. Электрические величины и методы их	2		
измерения.			4
8. Методы измерения магнитных			4
величин 9 1 Област настанования одгорити	3		
8.1. Объект исследования, алгоритм	3		
получения измерительной информации. 8.2. Методы получения и измерения	2		
магнитных полей.	2		
8.3. Методы измерения магнитных свойств	2		
магнитомягких и магнитотвердых	2		
материалов.			
9. Методы измерения неэлектрических			4
величин			–
9.1. Виды неэлектрических величин.	2		
Электроизмерительные приборы и	2		
измерительные преобразователи для			
измерения неэлектрических величин.			
9.2. Температура. Методы и приборы для	2		
измерения температуры.	2		
9.3. Приборы для измерения	1		
геометрических и механических величин,	1		
для измерения концентрации жидкой и			
газообразной среды.			
I-4. Виды и методы измерения			6
физических величин			
1. Определение линейных, плоскостных и		2	
объемных параметров физических		<u>~</u>	
объектов.			
OODERIOD.			

ИТОГО	180	38	38	104
Экзамен	36			36
занятие:				
Промежуточное аттестационное			2*	
механических величин.			_	
9.3. Измерение геометрических и			-	
9.2. Измерение температуры.			-	
измерение.				
9.1. Неэлектрические величины и их			-	
величин				
9. Методы измерения неэлектрических			2	
ферромагнитных материалов.				
8.3. Определение магнитных параметров			4	
магнитных полей.				
8.2. Измерение переменных и постоянных			4	6
характеристик МТМ.				
8.1. Алгоритм расчета магнитных			4	
величин				
8. Методы измерения магнитных				
измерения.				
7.1. Электрические величины и методы их			2	6
величин				
7. Методы измерения электрических				
занятие:				-
Промежуточное аттестационное			2*	6
физических величин.				
преобразователей для измерения				
6.2. Использование индукционных			4	
физических величин.				
преобразователей для измерения				
6.1. Применение гальваномагнитных			4	
6. Измерительные преобразователи				6
информации.				
точности определения измерительной				
приборов для обеспечения предполагаемой				
5.1. Выбор электроизмерительных			2	
5. Средства электрических измерений				6
магнитотвердых материалов.				
4. Определение площади петли гистерезиса			2	
взвешивания.				
тел методом гидростатического				
3. Определение плотности ферромагнитных			2	
используемых в магнитных измерениях.			_	
2. Определение массы малых объектов,			2	

Ш. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

- 3.1. Методические пособия по теме дисциплины;
- 3.2. Методические разработки (руководства по выполнению практических задач и лабораторных работ), включающие в себя:
- комплекс тем по рассматриваемым разделам дисциплины с примерами решения поставленных задач;
- рекомендации по выполнению лабораторных работ;
- рекомендации по организации самостоятельной работы студентов;
- 3.3. Примеры разрабатываемых практических задач.
- 3.3. Пример построения алгоритма выполнения разрабатываемых практических задач.

IV. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Форма проведения промежуточной аттестации: студенты, освоившие программу курса «Методы физических измерений» могут сдать экзамен согласно «Положению о рейтинговой системе обучения и оценки качества учебной работы студентов ТвГУ» (протокол №4 от 25 октября 2017 г.). Если условия «Положения о рейтинговой системе …» не выполнены, то экзамен сдается согласно «Положению о промежуточной аттестации (экзаменах и зачетах)» студентов ТвГУ (протокол №4 от 25 октября 2017 г.).

1. Типовые контрольные задания для проверки уровня сформирован- ности компетенции ОПК-1: способность использовать в профессиональной деятельности базовые естественнонаучные знания, включая знания о предмете и объектах изучения, методах исследования, современных концепциях, достижениях и ограничениях естественных наук.

Этап формирования	Типовые контрольные	Показатели и критерии
компетенции, в котором	задания для оценки знаний,	оценивания компетенции,
участвует дисциплина	умений, навыков (2-3	шкала оценивания
	примера)	
Промежуточный	1. Описать алгоритм определения	1. Не умеет физически
Уметь – самостоятельно	ошибки косвенных измерений	мыслить и системно решать
ставить задачу, строить	(систематические и случайные	проблемы, возникающие в
алгоритм ее выполнения,	ошибки, математическая запись	процессе постановки и
практически выполнять	получения результата).	выполнения поставленной
измерительные операции;	2 - Описать способы выражения	физической задачи.
оценить достоверность	и нормирования пределов	2. Умеет пользоваться
полученных результатов.	допускаемых погрешностей	отдельными навыками
	средств измерений (определения	решения проблем,
	форма математической записи,	возникающие в процессе
	основные соотношения).	постановки и выполнения
	demonstration (continuity).	поставленной физической
		задачи.
		3. Умеет удовлетворительно
		ставить задачу, строить
		алгоритм ее выполнения,
		практически выполнять
		измерительные операции.
		4. Хорошо использует
		навыки физического
		мышления и системного
		подхода при выполнении
		поставленной практической
		задачи.
		5. Самостоятельно применяет
		системный подход при
		решении проблем,
		возникающих в процессе
		планирования и решения
		поставленной физической
	1 0	задачи.
промежуточный	1. Основные понятия теории	1. Не умеет применять
знать — принципы	погрешностей.	системные решения для
проведения системного	2. Методы устранения	решения вопроса о выборе
выбора видов, методов и	переменных и монотонно	технических средств
средств измерения	изменяющихся систематических	измерения физической
физических величин и	погрешностей.	величины.
способов определения	1	2. Имеет отдельные
		r 1

точности полученных экспериментальных данных (электрических, неэлектрических величин).

3. Способы оценки систематической погрешности измерения физической величины.

представления о системных решениях при решении вопроса о выборе технических средств измерения физической величины.

- 3. Удовлетворительно разбирается в алгоритмах, используемых при выборе технических средств измерения физической величины.
- 4. Хорошо ориентируется в алгоритмах, используемых для решения вопроса о выборе технических средств измерения физической величины.
- 5. Свободно владеет способами системного решения для выбора технических средств измерения физической величины.

Начальный уметь - участвовать в постановке задачи, построения алгоритма ее выполнения, и практического участия в выполнении измерительных операций и оценке достоверности полученных результатов.

- 1. Проведено 6 измерений длины цилиндра. Среднее арифметическое из 6 измерений $\bar{l}=18,52$ см. Средняя квадратичная ошибка $S_n=0,28$. Определить доверительную вероятность того, что среднее арифметическое \bar{l} отличается от истинного l_u значения не больше чем на 0,25, т.е. будет выполняться неравенство 18,27 < l < 18,77. Доверительную вероятность выразить одним числом.
- 2. Каким классом точности должен обладать вольтметр для того, чтобы обеспечить относительную погрешность измерения напряжения U = 80 В не более $1,0\%^1$. Прибор имеет шкалу $0 \div 100$ В. Класс точности на корпусе прибора обозначен одним числом 1 .

- 1. Не умеет самостоятельно анализировать полученные результаты с использованием устоявшихся алгоритмов.
- 2. При анализе полученных результатов самостоятельно использует отрывочные знания о применении устоявшихся алгоритмов.
- 3. Удовлетворительно анализирует полученные результаты с использованием устоявшихся алгоритмов, но не всегда может объяснить окончательный результат.
- 4. Умеет самостоятельно анализировать полученные результаты с использованием устоявшихся алгоритмов.
- 5.При анализе полученных результатов свободно рассматривает полученные результаты с использованием

 $^{^{1}}$ 1·10°; 1,5·10°; (1,6·10°); 2·10°; 2,5·10°; (3·10°); 4·10°; 5·10°; 6·10°; (n=1, 0, -1, -2 и т.д.)

		устоявшихся алгоритмов.
Начальный знать - виды, методы и средства измерения физических величин обеспечивающие необходимую (или возможную) точность полученной измерительной информации.	1. Виды измерений физических величин. 2. Методы устранения постоянных систематических погрешностей. 3. Классы точности средств измерений (определение, форма выражения, обозначение).	1. Не знает виды, методы и средства измерения физических величин и точность, которую они могут при этом обеспечить. 2. Знает лишь отдельные виды, методы и средства измерения физических величин, обеспечивающих выполнение задачи с
		выполнение задачи с необходимой точностью. 3. Удовлетворительно знает виды, методы и средства измерения физических величин, ориентируется в проблемах достоверности полученных результатов. 4. Хорошо знает основные виды, методы и средства измерения физических
		величин и точность, которую они могут при этом обеспечить. 5. Свободно ориентируется в видах, методах и средствах измерения физических величин, обеспечивающих выполнение задачи с необходимой достоверностью.

2. Типовые контрольные задания для проверки уровня сформирован- ности компетенции ПК-2: способность проводить научные исследования в избранной области экспериментальных и (или) теоретических физических исследований с помощью современной приборной базы (в том числе сложного физического оборудования) и информационных технологий с учетом отечественного и зарубежного опыта.

Этап формирования компетенции, в котором участвует дисциплина	Типовые контрольные задания для оценки знаний, умений, навыков (2-3 примера)	Показатели и критерии оценивания компетенции, шкала оценивания
Начальный Уметь — используя устоявшиеся алгоритмы под руководством специалиста уметь воспроизвести схему	1. Каким классом точности должен обладать вольтметр для того, чтобы обеспечить относительную погрешность измерения напряжения	1. Не умеет применять стандартные алгоритмы для получения сведений о параметрах исследуемых объектов.

для измерения необходимых магнитных параметров при выполнении поставленного экспериментального задания.

- U = 80 B не более 1.0%. Прибор имеет шкалу 0 ÷ 100 В. Класс точности на корпусе прибора обозначен одним числом.
- 2 Рассчитать абсолютную (Δ) и относительную (δ) погрешности определения длины окружности $l_{o\kappa p} = 2\pi R$, если известны значения $R = (100,00\pm2,55)$ мм и $\pi =$ $3,14\pm0,005.$

Ошибка измерения определяется случайными погрешностями ($S_{nR} = 2,55$ мм, $S_{n\pi} = 0.005$), n = 5, $\alpha = 0.9$.

- 2. Имеет отдельные представления о применении стандартных алгоритмов для получения сведений о параметрах исследуемых объектов.
- 3. Удовлетворительно разбирается в применении стандартных алгоритмов для получения сведений о параметрах исследуемых объектов.
- 4. Хорошо ориентируется в алгоритмах, используемых получения сведений о параметрах исследуемых объектов.
- 5. Свободно владеет способами использования стандартных алгоритмов получения сведений о параметрах исследуемых объектов.

Начальный Знать – основные экспериментальные методы исследования физических величин, и получения измерительной информации используя современные экспериментальные приборы и установки.

- 1. Меры. Определение. Виды мер. Примеры.
- 2 Электроизмерительные установки. Определение. Виды электроизмерительных установок. Примеры.
- 1. Не знает основные экспериментальные методы исследования физических величин и получения измерительной информации.
- 2. Имеет отрывочные представления об основных экспериментальных методах исследования физических величин и получения измерительной информации.
- 3. Удовлетворительно знает основные экспериментальные методы исследования физических величин и получения измерительной информации.
- 4. Хорошо знает основные экспериментальные методы исследования физических величин и получения измерительной информации.
- 5. Свободно ориентируется в приборной базе для получения информации о магнитных свойствах

Промежуточный Уметь – правильно планировать и проводить измерения физических величин, обрабатывать их с применением прикладных компьютерных офисных и графических программ, анализировать полученные результаты на основе теоретических знаний.

- 1 Описать алгоритм измерения величины индукции магнитного поля и его изменения при помощи индукционного преобразователя (определить тип выбранного измерительного прибора и способ коррекции побочной величины, влияющей на результат исследования).
- 2 Сформировать алгоритм определения погрешности измерения физической величины, полученной косвенным путем (из математического выражения, связывающего значения величин, полученных путем прямого измерения).
- экспериментальной задачи. 2. Имеет отдельные представления о составлении алгоритма выполнения поставленной экспериментальной задачи.
 - 3. Удовлетворительно владеет основными навыками составления алгоритма выполнения поставленной экспериментальной задачи

исследуемых объектов. 1. Не умеет составлять

алгоритм выполнения

поставленной

- 4. Хорошо владеет навыками составления алгоритмов выполнения поставленной экспериментальной задачи.
- 5. Свободно владеет навыками составления алгоритмов выполнения поставленной экспериментальной задачи

Промежуточный Знать - основные экспериментальные методы исследования физических величин, и получения измерительной информации необходимой достоверности, используя современные экспериментальные приборы и установки.

- 1. Методы измерения физических величин.
- 2. Преобразователи физических величин, основные понятия и определения, общая классификация (по принципу использования в них того или иного физического явления).
- 1. Не знает приборы и установки для получения информации о физических свойствах исследуемых объектов.
- 2. Имеет отрывочные представления о приборах и установки для получения информации о физических свойствах исследуемых объектов.
- 3. Удовлетворительно знает основные технические устройства для получения информации о физических свойствах исследуемых объектов, допускает отдельные ошибки.
- 4. Хорошо знает приборы и установки для получения информации о физических свойствах исследуемых объектов.

	5. Свободно оперирует знаниями о приборах и установках для получения информации о физических
	свойствах исследуемых объектов.

V. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

- а) Основная литература:
- 1. Зайдель А. Н. Ошибки измерений физических величин [Электронный ресурс]: учеб. пособие Электрон. дан. Санкт-Петербург: Лань, 2009. 112 с. Режим доступа: https://e.lanbook.com/book/146.
- 2. Ивлиев А. Д. Физика [Электронный ресурс] : учеб. пособие Электрон. дан. Санкт-Петербург : Лань, 2009. 672 с. Режим доступа: https://e.lanbook.com/book/163.
- 3. ГОСТ 8.401 "ГСИ. Классы точности средств измерений. Общие требования". М.- Изд-во стандартов. http://www.znaytovar.ru/gost/2/GOST_840180_Gosudarstvennaya_s.html
- б) Дополнительная литература:
- 1. Пастушенков А.Г. Методы измерения физических величин. Виды, методы и средства измерений [Электронный ресурс] : [учеб. пособие]. / А. Г. Пастушенков ; Твер. гос. ун-т, Каф. Магнетизма. Тверь: ТвГУ, 2001. Ч. 1. 113 с.
- 2. Пастушенков А.Г. Измерительные преобразователи. Гальваномагнитные и индукционные преобразователи [Электронный ресурс] : [учеб. пособие]. (Ч.1) / А.Г. Пастушенков; Твер. гос. ун-т, Каф. Магнетизма. Тверь: ТвГУ, 2001. 103 с.
- 3. Пастушенков, А.Г. Электрические измерения магнитных величин [Электронный ресурс] : [учеб. пособие]. (Ч. 1) / А. Г. Пастушенков ; Твер. гос. ун-т, Каф. магнетизма. Тверь : Тверской государственный университет, 2000. 121 с.

VI. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Внутренние информационные ресурсы:

Научная библиотека ТвГУ – http://library.tversu.ru;

Сервер доступа к модульной объектно-ориентированной динамической учебной среде Moodle – http://moodle.tversu.ru;

Сервер обеспечения дистанционного обучения и проведения Web-конференций Mirapolis Virtual Room – http://mvr.tversu.ru;

Репозиторий научных публикаций ТвГУ – http://eprints.tversu.ru.

Внешние информационные ресурсы:

Научная электронная библиотека eLibrary.ru;

Электронная база данных диссертаций РГБ;

База данных Реферативных журналов ВИНИТИ;

Полнотекстовый доступ к журналам АІР (Американский институт физики);

Полнотекстовый доступ к журналам и книгам издательства Springer Verlag;

Полнотекстовый доступ к отдельным журналам и книгам Института инженеров по электротехнике и электронике (Institute of Electrical and Electronics Engineers);

Реферативная база Inspec (доступ к рефератам и полным текстам монографий и научных статей в области физики, электротехники, электроники, коммуникаций, компьютерных наук и информационных технологий).

Лицензионное программное обеспечение:

Системное ПО:

Операционная система Microsoft Windows (версии XP и 7-10);

Microsoft Windows Server (версии 2003 R2 и 2008 R2);

Novell Netware 5.1.

Офисные программы:

• Microsoft Office Professional (версии 2003, 2007 и 2010-2010+).

Графика:

- Adobe Photoshop (версии CS2, CS4);
- Adobe Acrobat Professional (версии 7, 8, 9).

Научные расчеты и графика:

• OriginLab OriginPro 8.1.

Вспомогательное ПО:

- Словари ABBYY Lingvo;
- Антивирусное ПО Symantec Endpoint Protection.

VII. Методические указания для обучающихся по освоению дисциплины

7.1.Примеры заданий для текущего контроля успеваемости

Погрешности измерений

Действительным значением величины является значение, которое...

- 1. воспроизводит или хранит единицу величины;
- 2. имеет нормированные метрологические характеристики;
- 3. имеет измеряемая величина;

- 4. близко к истинному.
- . По способу выражения погрешности средств измерений могут быть...
 - 1. случайные;
 - 2. систематические;
 - 3. приведенные;
 - 4. грубые

Основы метрологии

- . Раздел метрологии, занимающийся решением законодательных задач, называется...
 - 1. прикладной;
 - 2. законодательной;
 - 3. теоретической;
 - 4. расчетной.

Укажите цель метрологии:

- 1. обеспечение единства измерений с необходимой и требуемой, точностью;
- 2. разработка и совершенствование средств и методов измерений повышения их точности;
- 3. разработка новой и совершенствование, действующей правовой и нормативной базы;
- 4. совершенствование эталонов единиц измерения для повышения их точности.

Средства измерений и обработка результатов измерений

По назначению средства измерений подразделяют на...

- 1. эталон;
- 2. рабочее;
- мера;
- 4. образцовое.

Технические характеристики, описывающие свойства средств измерений и оказывающие влияние на результаты и на погрешности измерений, называется...

- 1. метрологическими характеристиками;
- 2. метрологическими нормами;
- 3. динамическими характеристиками;
- 4. нормативно-техническими требованиями.

7.2. Темы рефератов по курсу «Методы физических измерений»

1. Измерение физических величин. Понятие и общие представления.

- 2. Измерение физических величин. Основные типы погрешностей и их расчет.
- 3. Методы прямых и косвенных измерений. Случайные погрешности косвенных измерений.
- 4. Прямые и косвенные измерения. Систематические погрешности.
- 5. Погрешности косвенных измерений.
- 6. Ошибки прямых измерений.
- 7. Ошибки косвенных измерений. Закон сложения ошибок.
- 8. Разновидности погрешностей.
- 9. Преобразователи физических величин. Общие представления.
- 10. Гальваномагнитные преобразователи.
- 11. Магниторезистивные преобразователи, общая классификация.
- 12. Магниторезисторы, свойства, виды и способы построения.
- 13. Преобразователи Холла.
- 14. Применение преобразователей Холла.
- 15. Индукционные преобразователи.
- 16. Применение индукционных преобразователей.
- 17. Сравнительный анализ преобразователей Холла и магниторезисторов.
- 18. Магнитодиодный эффект. Магниторезисторы.
- 19. Измерительные преобразователи.
- 20. Электроизмерительные приборы. Класс точности.
- 21. Измерение электрических величин.
- 22. Электрические измерения магнитных величин.
- 23. Исследование гистерезисных характеристик в постоянных магнитных полях.
- 24. Исследование свойств ферромагнетиков в переменных магнитных полях.
- 25. Электрические измерения неэлектрических величин.
- 26. Температура и ее измерение.
- 27. Измерение температуры бесконтактными методами. Пирометрия.
- 28. Термоэлектрические преобразователи. Принципы построения, применяемые материалы.
- 29. Методы измерения температуры.
- 30. Термопары, виды термопар, области применения и способы использования.

<u>Примечание:</u> подчеркнутые темы вынесены на полностью самостоятельное изучение.

7.3. Примеры решения практических задач

Задача: При измерении длины цилиндра с помощью микрометра, обеспечивающего точность измерения линейного размера 0,005 мм,

получены семь значений X_i : 7,420; 7,415; 7,430; 7,420; 7,445; 7,410 и 7,425 мм. Определить доверительную вероятность того, что среднее арифметическое отличается от истинного (действительного) значения не более чем на 0,005 мм.

1-й шаг: из соотношения $\overline{X} = \frac{\sum\limits_{i=1}^{r} X_i}{7}$ находим среднее арифметическое или действительное значение \overline{X} как

$$\overline{X} = \frac{7,420 + 7,415 + 7,430 + 7,420 + 7,445 + 7,410 + 7,425}{7} = \frac{51,965}{7} = 7,424 \text{ mm}.$$

Это значит, что будет выполняться неравенство $(7,419 \le \overline{X} \le 7,429)$ мм. **2-**й шаг: для полученных значений находим среднюю квадратическую ошибку S_n

$$S_n = \sqrt{\frac{\sum\limits_{i=1}^7 \left(X_i - \overline{X}\right)^2}{6}} = \sqrt{\frac{0,000787}{6}} = \sqrt{0,0001311} = 0,01145 \text{ MM}.$$

Вероятность того, что среднее арифметическое \overline{X} попадает в этот интервал, определяется следующим образом. В первую очередь находим значение коэффициента Стьюдента. Здесь Δ_X =0,005 мм, n=7, а $S_n=0$,01145

$$t_{\alpha,7} = \frac{\sqrt{n}\Delta_X}{S_n} = \frac{\sqrt{7} \cdot 0,005}{0,01145} = \frac{0,01323}{0,01145} = 1,155 \sim 1,2$$

В таблице 4 [4] в шестой строке (для n=7) $t_{\alpha,7}=1,2$ находится между столбцами с доверительной вероятностью $\alpha_1=0,7$ ($t_{0,7;7}=1,1$) и $\alpha_2=0,8$ ($t_{0,8;7}=1,4$). Можно удовлетвориться ответом, что для этого случая доверительная вероятность лежит между 0,7 и 0,8.

Если необходимо доверительную вероятность записать одним числом поступают двояко:

1. Если предположить, что между значениями $t_{0,7;7} = 1,1$ и $t_{0,8;7} = 1,4$ значения α меняются линейно, то для $t_{\alpha;7} = 1,2$ доверительная вероятность будет равна $\alpha \sim 0.72^*$.

Окончательный результат можно записать как

$$X = 7,425 \pm 0,005$$
мм, для $\alpha \sim 0,72$.

 $^{^{*}}$ Зависит от точности таблиц, связывающих доверительные вероятности и коэффициенты Стьюдента.

2. Если необходимо получить более точное значение, то пропорциональную часть вычисляют подобно тому, как это делается при применении таблиц логарифмов.

Задача состоит в необходимости определения пропорциональной части Δ_{α} от величины α . Для этого вычисляют разность $t_{0,8;7}$ - $t_{0,7;7}$ = 1,4 - 1,1 = 0,3, затем разность $t_{\alpha:7}$ - $t_{0,7;7}$ = 1,2 - 1,1 = 0,1.

Саму пропорциональную часть Δ_{α} определяют из соотношения

$$\frac{\Delta_{\alpha}}{\alpha_2 - \alpha_1} = \frac{t_{\alpha;7} - t_{0,7;7}}{t_{0,8;7} - t_{0,7;7}},$$

Откуда
$$\Delta_{\alpha} = (\alpha_2 - \alpha_1) \frac{t_{\alpha;7} - t_{0,7;7}}{t_{0,8;7} - t_{0,7;7}} = 0,1 \frac{0,1}{0,3} = 0,033$$
 и $\alpha = \alpha_I + \Delta_{\alpha} = = 0,7 + 0,033 \sim 0,73$.

Окончательный результат можно записать как

$$X = 7,425 \pm 0,005$$
мм, для $\alpha \sim 0,73$.

7.4. Примеры заданий для промежуточной аттестации успеваемости

7.3.1. Типовые задания для оценивания результатов сформированности компетенции ОПК-1.

Категория знать:

- Классификация погрешностей (основание классификации, виды погрешностей, определения).
- Способы выражения и нормирования пределов допускаемых погрешностей средств измерений (определения форма математической записи, основные соотношения).

Категория уметь:

- Два тела движутся навстречу друг другу со скоростями $V_1 = (90,0\pm5,5)$ км/час и $V_2 = (150,0\pm12,5)$ км/час. Рассчитать абсолютную (Δ) и относительную (δ) погрешности определения относительной скорости тел $V_{omh} = V_1 + V_2$.

Ошибка измерения суммарной скорости определяется случайными погрешностями ($S_{VI}=5,5$ км/час , $S_{V2}=\pm12,5$)км/час , если $n=5,\,\alpha=0,9$.

- Какой класс точности необходимо присвоить вольтметру, если он обеспечивает относительную погрешность измерения напряжения $U = 150 \, \mathrm{B}$ порядка 1,5 %.

Прибор имеет шкалу $50 \div 200 \, \mathrm{B}$. Класс точности на корпусе прибора обозначается одним числом.

7.3.2. Типовые задания для оценивания результатов сформированности компетенции ПК-2.

Категория знать:

- Показать графически, из каких составляющих формируется магнитное поле в межполюсном пространстве электромагнита.
- Основные погрешности измерительных преобразователей.

Категория уметь:

- Определение индукции исследуемых объектов. Расположение преобразователей относительно образца и направления перемагничивающего поля (описать на примере одной из магнитных цепей).
- Принять участие в дискуссии:
 - 1. Метрология наука об измерениях.
 - 2. Измерение физических величин. Проблемы достоверности.
 - 3. Погрешности измерений физических величин. Способы определения.
 - 4. Средства измерения физических величин (классификация, метрологические характеристики).
 - 5. Классы точности средств измерения физических величин.

7.5. Методические указания для решения практических вопросов

Перечень методических разработок, доступных в научной библиотеке ТвГУ – http://library.tversu.ru поименован в списке основной 1, 2 и дополнительной 1 - 10 литературы.

7.6. Требования к рейтинг-контролю

Максимальная сумма баллов, которые можно получить за семестр 100.

- полусеместровая и семестровая аттестации 40 баллов (две контрольных работы по 20 баллов);
- два бонусных задания 10 баллов (по 5 баллов каждый);
- 10 баллов за работу на занятиях в семестре.

Все баллы, полученные в течение семестра, суммируются (60 баллов). Задания по лабораторным работам должны быть выполнены полностью.

В соответствие с Положением о рейтинговой системе оценки качества учебной работы студентов ТвГУ 40 баллов студент может получить на экзамене.

Шкала перевода рейтинговых баллов в оценку:

От 50 до 69 баллов – «удовлетворительно»;

От 70 до 84 баллов – «хорошо»;

От 85 до 100 баллов - «отлично».

Студенту, набравшему в течение семестра меньше 20 баллов, в экзаменационной ведомости выставляется оценка «неуд». Данному студенту разрешается пересдача экзамена во время указанного в расписании сессии по направлению из деканата.

7.7. Примерные вопросы для полусеместровой и семестровой рейтинговой аттестации

Измерение физических величин:

- 1. Измерение физических величин: определение, задачи, примеры (показать форму записи результата измерения физической величины).
- 2. Прямые измерения (определение, форма выражения математическая запись, аппаратные средства, примеры).
- 3. Косвенные измерения (определение, форма выражения математическая запись, аппаратные средства, примеры).
- 4. Дать определения измеренному, истинному и действительному значению физической величины.
- 5. Нулевой метод измерения физических величин (определение, примеры). К какой классификационной группе методов измерения принадлежит?
- 6. Дифференциальный метод измерения физических величин (определение, примеры). К какой классификационной группе методов измерения принадлежит?

Ошибки измерения физических величин:

- 1. Погрешность измерения как совокупность систематической и случайной составляющих (определение, примеры).
- 2. Правила округления полученного экспериментального результата (проиллюстрировать на примерах когда абсолютная погрешность выражена целыми числами).
- 3. Действительное значение физической величины. Как действительное значение физической величины определяется на практике (привести пример).
- 4. Как на практике производится оценка истинного (действительного) значения измеряемой величины (объяснить на примере).
- 5. Погрешность измерения физической величины. Определение. Классификация в зависимости от условий возникновения погрешности.
- 6. Правила округления погрешностей (проиллюстрировать на примерах когда абсолютная погрешность выражена целыми числами).

Измерительные приборы:

- 1. Средства электрических измерений. Меры. Определение. Виды мер. Примеры.
- 2. Электроизмерительные приборы. Определение. Классификация по способу отображения измеряемой информации. Примеры.
- 3. Электроизмерительные приборы. Определение. Классификация по способу обработки измерительной информации. Примеры.
- 4. Электроизмерительные установки. Определение. Виды электроизмерительных установок. Примеры.
- 5. Измерительные информационные системы. Определение. Виды измерительных информационных систем. Примеры.
- 6. Метрологические характеристики электроизмерительных приборов. Определение. Примеры.

Преобразователи физических величин (термины и определения):

- 1. Общая классификация преобразователей физических величин.
- 2. Основные свойства измерительных преобразователей (определения, примеры).
- 3. Гальваномагнитные преобразователи. Общее определение, физические явления, лежащие в основе их действия, принципы построения, общая классификация.
- 4. Преобразователи Холла (определение, принцип построения, общее устройство, требования к материалу чувствительной области). Привести примеры.
- 5. Магниторезисторы (определение и основные свойства).
- 6. Индукционные преобразователи. Общее определение, физические явления, лежащие в основе их действия, принципы построения, общая классификация.

Электроизмерительные приборы (определения и свойства):

- 1. Метрологические характеристики электроизмерительных приборов. Определение. Примеры.
- 2. Абсолютная погрешность электроизмерительного прибора. Способы выражения математическая запись, единицы измерения.
- 3. Абсолютные погрешности меры, электроизмерительного прибора и измерительного преобразователя. Определения.
- 4. Почему абсолютная погрешность электроизмерительного прибора выражается в единицах измерения шкалы прибора и имеет либо положительное, либо отрицательное значение. Обосновать.
- 5. Как определяется и где фиксируется величина абсолютной погрешности и поправки электроизмерительных приборов?

6. Чувствительность электроизмерительного прибора. Определение. Способы выражения — математическая запись. Область применения понятия (рассмотреть аналоговые и цифровые приборы).

VIII. Перечень педагогических информационных И технологий, образовательного используемых при осуществлении процесса дисциплине, включая перечень программного обеспечения И информационных справочных систем (по необходимости)

Преподавание учебной дисциплины «Методы физических измерений» строится на сочетании классических и проблемно-практических лекций, на которых в форме дискуссии рассматриваются элементы программы курса, требующие конкретного решения для предложенных граничных условий в алгоритме решения предложенной задачи. Практические навыки выполнения практических задач приобретаются в процессе выполнения лабораторных работ. процессе двусторонней деятельности формируются умения мыслить, и применять физические законы для решения практических проблем, понимать смысл универсальности конкретных Практические проявления законов природы. навыки выполнения экспериментальных задач приобретаются процессе выполнения При необходимости, рассмотрение и решение лабораторных работ. практических задач ведется с применением офисных, графических и научнографических программ поименованных в разделе VI настоящей рабочей программы дисциплины.

Степень освоения рассматриваемого материала определяется в периоды полусеместровой и семестровой рейтинговой аттестации при проведении тестирования и самостоятельной письменной работы.

Удельный вес занятий лекционного типа от общего объема часов составляет 33%, на самостоятельную работу - 33% от общего числа часов.

IX. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Наименование специальных* помещений	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения. Реквизиты подтверждающего документа
Лекционная аудитория № 226 (170002 Тверская обл., г. Тверь, Садовый пер., д. 35)	1 Микшерный пульт Yamaha MG- 124C 2 Аудиокомплект (мик. пульт, акуст. усилитель, акуст. система, радиосистема) 3 Интерактивная система SMART Board 660i4 4 Мультимедийный проектор Epson EB-4850WU с потолочным креплением 5 Телекоммуникационный шкаф ШТК-М-18.6.6-3AAA с полками 6 Телекоммуникационный шкаф ШТК-M-18.6.6-3AAA с полками 7 Экран настенный ScreenMedia 213*213 (М082-08156) 8 Компьютер iRU Corp 510 15-2400/4096/500/G210-512/DVD-RW/W7S/монитор E-Machines E220HQVB 21,5" 9 Комплект учебной мебели на 110	Google Chrome — бесплатно Kaspersky Endpoint Security 10 для Windows — Акт на передачу прав №2129 от 25 октября 2016 г. MS Office 365 pro plus - Акт приема-передачи № 369 от 21 июля 2017 Microsoft Windows 10 Enterprise - Акт приема-передачи № 369 от 21 июля 2017
Учебно-научная лаборатория магнитных и электрических измерений № 40 (170002 Тверская обл., г. Тверь, Садовый пер., д. 35)	1. Вольтметр В7-78/1 2. Экран настенный ScreenMedia 153*203 3. Контроллер GPIB-USB-HS 778927- 01 4. Сканер для вольтметра В7-78/1 5. Сканер для вольтметра В7-78/1 6. Двухфазный Lock-in усилитель SR 830 7. Двухфазный Lock-in усилитель SR 830 8. Компьютер iRU Corp 510 I5- 2400/4096/500/G210-512/DVD- RW/W7S/монитор E-Machines E220HQVB 21.5" 9. Установка "Мишень" 10. Системный блок P4 1.6 512/ASUS P4B266/DDR2*512/80Gb ST380021A(2ШТ)+клавиатура+мышь 11. Переносной комплект мультимедийной техники	Google Chrome — бесплатно Kaspersky Endpoint Security 10 для Windows — Акт на передачу прав №2129 от 25 октября 2016 г. MS Office 365 pro plus - Акт приема-передачи № 369 от 21 июля 2017 Microsoft Windows 10 Enterprise - Акт приема-передачи № 369 от 21 июля 2017

Лабораторное оборудование кафедры физики конденсированного состояния, предназначенное для обеспечения практикумов «Магнитные измерения», «Процессы перемагничивания магнетиков» и «Специальные методы исследования магнетиков».

Помещения для самостоятельной работы:

Наименование помещений	Оснащенность помещений для самостоятельной работы	Перечень лицензионного программного обеспечения. Реквизиты подтверждающего документа
Компьютерный	1. Компьютер INT Allegro, монитор	Google Chrome – бесплатно
класс № 216	Benq 24" GL2460 – 10 шт.	Kaspersky Endpoint Security
	2. Коммутатор D-Link DGS-1008D	10 для Windows – Акт на
(170002 Тверская	3. Коммутатор D-Link DGS-1008D	передачу прав №2129 от 25
обл., г. Тверь,	4. Проектор Beng MW523 DLP с	октября 2016 г.
Садовый пер., д. 35)	потолочным креплением и	MS Office 365 pro plus -
	проекционным экраном	Акт приема-передачи №
	5. Комплект учебной мебели	369 от 21 июля 2017
		Microsoft Windows 10
		Enterprise - Акт приема-
		передачи № 369 от 21 июля 2017

Помещения для самостоятельной работы:

Наименование помещений	Оснащенность помещений для самостоятельной работы	Перечень лицензионного программного обеспечения. Реквизиты
Помещение для самостоятельной работы, учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, практики, Компьютерный класс физикотехнического	1. Компьютер RAMEC STORM C2D 4600/160Gb/ 256mB/DVD-RW +Mонитор LG TFT 17" L1753S-SF – 12 шт 2. Мультимедийный комплект учебного класса (вариант № 2) Проектор Casio XJ-M140, настенный проекц. экран Lumien 180*180. ноутбук Dell N4050. сумка 15,6", мышь 3. Коммутатор D-Link 10/100/1000mbps 16-potr DGS-1016D 4. Видеокамера IP-FALCON EYE FE-IPC-BL200P, ОнЛайн Трейд ООО 5. Видеокамера IP-FALCON EYE FE-IPC-BL200P, ОнЛайн Трейд ООО	подтверждающего документа Adobe Acrobat Reader DC - бесплатно Саdence SPB/OrCAD 16.6 - Государственный контракт на поставку лицензионных программных продуктов 103 - ГК/09 от 15.06.2009 Google Chrome - бесплатно Java SE Development Kit 8 Update 45 (64-bit) - бесплатно Kaspersky Endpoint Security 10 для Windows – Акт на передачу прав №2129 от 25 октября 2016 г. Lazarus 1.4.0 - бесплатно Lego MINDSTORM EV3 - бесплатно Mathcad 15 M010 - Акт предоставления прав ИС00000027 от 16.09.2011 МАТLAВ R2012b - Акт предоставления прав № Us000311 от 25.09.2012

факультета.	6. Демонстрационное	Microsoft Express Studio 4 -
Компьютерная	оборудование комплект	бесплатно
лаборатория	«LegoMidstormsEV3»	МіКТеХ 2.9 - бесплатно
робототехнических		MPICH 64-bit – бесплатно
систем №4а	7. Комплект учебной мебели	MSXML 4.0 SP2 Parser and SDK -
(170002 Тверская		бесплатно
обл., г. Тверь,		Microsoft Windows 10 Enterprise -
Садовый пер., д. 35)		Акт приема-передачи № 369 от 21
		июля 2017
		MS Office 365 pro plus - Akt
		приема-передачи № 369 от 21
		июля 2017

Х. Сведения об обновлении рабочей программы дисциплины

№п.п.	Обновленный раздел рабочей программы дисциплины	Описание внесенных изменений	Дата и протокол заседания кафедры, утвердившего изменения
1.	Раздел IV	Реквизиты «Положения о рейтинговой системе обучения и оценки качества учебной работы студентов ТвГУ» и «Положения о промежуточной аттестации (экзаменах и зачетах) студентов ТвГУ»	Протокол Совета ФТФ №5 от 31 октября 2017 г.
2.	Раздел IX	Оснащенность аудиторного фонда для проведения учебных занятий и самостоятельной работы студентов согласно «Справки МТО ООП»	Протокол Совета ФТФ №5 от 31 октября 2017 г