Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Смирнов Сергей Николаевич

Должность: врио ректора

Дата подписания: 23.09.2022 14:25:15 Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08Мини стерство образования и науки Российской Федерации ФГБОУ ВО «Тверской государственный университет»

Утверждаю:

Руковадитель ООП:

Б.Б.Педько 2017 г.

<u>авуста</u> 2017 г

Рабочая программа дисциплины (с аннотацией)

Кристаллофизика

Направление подготовки 03.03.03 Радиофизика

Программа подготовки «Физика и технология радиоэлектронных приборов и устройств»

Для студентов 4 курса очной формы обучения

Составитель:

к.ф.-м.н., доцент Залетов А.Б.

І. Аннотация

1. Наименование дисциплины в соответствии с учебным планом

Кристаллофизика

2. Цель и задачи дисциплины

Целью освоения дисциплины является: обучение теории и практики симметрийного подхода к анализу физических свойств кристаллических и аморфных веществ, теоретическому определению возможностей обнаружения определенных физических свойств в новых твердокристаллических материалах (направленный поиск ферроиков-ферромагнетиков, ферроэластиков).

Задачами освоения дисциплины являются: привить умение тензорного описания свойств, правильного понимания тензорных систем, определение различий между полевыми и материальными тензорами. Применение этих знаний в практике.

3. Место дисциплины в структуре ООП

Дисциплина относится к дисциплинам по выбору базовой части учебного плана.

Для успешного освоения дисциплины «Кристаллофизика»: необходимо знать основы физики твердого тела и молекулярной физики, системы кодификации кристаллов, понятия об обратной решетке, зонах Бриллюэна, ячейках Вагнера-Зейтца

4. Объем дисциплины: 3 зачетных единицы, 108 академических часов, в том числе контактная работа: лекции 32 часа, практические занятия 32 часа; самостоятельная работа: 44 часа.

5. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемые результаты освоения образовательной программы (формируемые	Планируемые результаты обучения по дисциплине
компетенции)	
ОПК-2	Уметь: самостоятельно приобретать знания, используя
способность	современные информационные технологии
самостоятельно	
приобретать новые	
знания, используя	
современные	

Владеть: основами научной работы и приобрести умения		
подготавливать научные публикации.		
Уметь: решать задачи о взаимодействии групп		
симметрии, описывающих физические свойства и		
взаимодействия,		
применять на практике профессиональные знания в плане		
постановки научной задачи.		
Знать: закономерности симметрии		
твердокристаллических объектов, в том числе структур		

6. Форма промежуточной аттестации

экзамен в 7 семестре

7. Язык преподавания русский.

ІІ. Структура дисциплины

Учебная программа – наименование	Всего	Контак	тная работа	Самостоя
разделов и тем	(час.)	((час.)	тельная
		Лекции	Практи-	работа
			ческие	(час.)
			занятия	

1 Кристаллическое состояние	4	4	
вещества.			
1.1. Макроскопическое строение			
кристаллов. Кристаллофизические			
характеристики монокристалла и			
поликристалла. Монокристаллы,			
поликристаллы, двойники, текстуры.			
1.2. Микроструктура кристаллов.			
Кристаллическая решетка и крис-			
таллическая структура.			
Примеры решеток. Принципиальные			
отличия структуры и решетки.			
1.3. Основные свойства кристаллов -			
однородность, анизотропия, симметрия.			
Огранение. Методы описания на			
примере эллипсоида Френеля. Методы			
описания свойств кристаллов.			
2. Теория симметрических	8	8	
преобразований.	0	0	
2.1. Симметрия. Основные понятия.			
Симметрические преобразования.			
Различия между элемен-тами			
симметрии и операциями 1 и 2-го рода.			
2.2. Основные понятия теории групп.			
Основные аксиомы. Пересечения групп			
на примере операции скользящего			
отражения.			
2.3. Свойства групп. Произведения			
групп. Внутренние и внешние			
прозведения.			
2.4. Кристаллографические группы.			
Типы групп симметрии. Пери-			
одичность в группах симметрии.			
Федоровские группы. Расширение			
понятия симметрии. Симметрия живого			
и неживого.			
3. Кристаллографическая сим-	4	4	
волика.	·		
3.1. Символы групп симметрии.			
Некристаллографические группы			
симметрии в теорети-ческой физике.			
3.2. Классы кристаллов. Точечные и			
пространственные группы.			
	l		

Плоскостные группы.				
3.3. Симморфные, гемисимморфные,				
асимморфные группы. Распределение				
веществ по Федоровским группам.				
4. Симметрия физических свойств	6	6		
кристаллов.	O	O		
4.1. Предельные группы. Сопод-				
чиненность групп симметрии.				
4.2. Влияние симметрии на свойства				
кри-сталлов. Принцмпы Неймана и				
Кюри.				
4.3. Матричные представления в теории				
симметрии. Характеры. Сокращенные формы записи.				
4.4. Скалярные свойства кристаллов.				
Тензорные свойства. Группы симметрии				
физических свойств.				
1	6	6		
5. Оптические свойства кристаллов. 5.1. Оптические характеристики	0	0		
лических сред в различных областях				
спектра.				
5.2. Виды оптических поверхностей.				
Математические формы описания				
оптических поверхностей.				
5.3. Гиротропия. Двойное луче-				
преломление. Определение угла				
поворота плоскости поляризации.	4	4		
6. Магнитная симметрия кристаллов.	4	4		
6.1. Операция обращения времен.				
Таблица Кэме. Точечные группы				
антисимметрии.				
6.2. Предельные группы анти-				
симметрии. Пример – группа				
антисимметрии ферромагнитного				
железа.				
Практические занятия	10		0	
1. Выращивание монокристаллов	10		8	2
методом монокристальной зонной				
плавки. Изучение кристаллографии				
монокристаллов.	10			2
2. Выращивание монокристаллов	10		8	2
методом Чохральского. Морфология				

кристаллов.				
3. Изучение методики зонной очистки и	10		8	2
выращивания моно-кристаллов на				
установке бестигельной зонной плавки.				
Изучение кристаллографии				
монокристаллов.				
4. Выращивание кристаллов из	10		8	2
растворов и гелей.				
Экзамен	36			36
ИТОГО	108	32	32	44

Ш. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

- планы практических занятий,
- Методические рекомендации
- типовые тесты
- итоговый контроль

IV. Фонды оценочных средств для проведения промежуточной аттестации обучающихся по лиспиплине

Форма проведения промежуточного контроля: студенты, освоившие программу курса «Кристаллофизика» могут сдать экзамен по итогам рейтинговой аттестации согласно «Положения о рейтинговой системе обучения и оценки качества учебной работы студентов ТвГУ» (протокол №4 от 25 октября 2017 г.).

Если условия «Положения о рейтинговой системе …» не выполнены, то экзамен сдается согласно «Положения о промежуточной аттестации (экзаменах и зачетах) студентов ТвГУ» (протокол №4 от 25 октября 2017 г.).

Контроль сформированности компетенции осуществляется с помощью оценочных средств на основе критериев, которые разрабатываются с целью выявления соответствия этапов освоения компетенции планируемым результатам обучения (см. карту компетенций).

1. Типовые контрольные задания для проверки уровня сформированности компетенции ОПК-2 "Способность самостоятельно приобретать новые знания, используя современные образовательные и информационные технологии"

Этап формирования	Типовые контрольные	Показатели и критерии
компетенции, в котором	задания для оценки знаний,	оценивания компетенции,
участвует дисциплина	умений, навыков (2-3	шкала оценивания
	примера)	
		• Тема актуальна и
Уметь: самостоятельно	определить наличие полярных	сформулирована

приобретать знания,	свойств кристалла с помощью	грамотно – 1 балл;
используя современные	таблицы классов кристаллов	• тема полностью раск-
информационные		рыта в докладе; кор-
технологии	определить наличие аксиаль-	ректно использован по-
	ных свойств кристалла с	нятийный аппарат; ло-
	помощью таблицы классов	гичность и ясность
	кристаллов	изложения – 2 балла;
		• использованы
		публикации последних
		лет – 1 балл;
		• определена позиция
		автора; предложен и
		аргументирован
		собственный взгляд на
		проблему – 1 балл;

2. Типовые контрольные задания для проверки уровня сформированности компетенции ПК-1 "Способность понимать принципы работы и методы эксплуатации современной радиоэлектронной и оптической аппаратуры и оборудования"

Этап формирования	Типовые контрольные	Показатели и критерии
компетенции, в котором	задания для оценки знаний,	оценивания компетенции,
участвует дисциплина	умений, навыков (2-3	шкала оценивания
	примера)	
заключительный		• Тема актуальна и
Владеть: основами	Определить класс и симметрию	сформулирована гра-
научной работы и	кристалла по Герману-Могену,	мотно – 1 балл;
приобрести умения	Флинту, Шенфлису.	• тема полностью ра-
подготавливать научные		скрыта в докладе;
публикации.	Сделать доклад на тему	корректно использован
	"Современные методы выра-	понятийный аппарат;
	щивания кристаллов"	логичность и ясность
		изложения – 2 балла;
		• использованы публика-
		ции последних лет – 1
		балл;
		• определена позиция
		автора; предложен и
		аргументирован собст-
		венный взгляд на
		проблему – 1 балл;
заключительный		• Тема раскрыта с опорой
		на соответствующие

Уметь: решать задачи о взаимодействии групп симметрии, описывающих физические свойства и взаимодействия, применять на практике профессиональные знания в плане постановки научной задачи.

Решить задачу на умножение матриц, описывающих двойную поворотную ось и перпендикулярную к ней плоскость симметрии.

Что собой представляют чёрнобелые группы симметрии.

- понятия и теоретические положения – 4 балла
- Аргументация на теоретическом уровне неполная, смысл ряда ключевых понятий не объяснен 1 балл
- Терминологический аппарат непосредственно не связан с раскрываемой темой 0 баллов
- Факты и примеры в полном объеме обосновывают выводы 3 балла
- Допущена фактическая ошибка, не приведшая к существенному искажению смысла 2 балла
- Допущены фактические и логические ошибки, свидетельствующие о непонимании темы – 0 баллов

заключительный

Знать: закономерности симметрии твердокристаллических объектов, в том числе структур

Симметрические преобразования: виды равенств, преобразования первого и второго рода.

Кристаллофизические характеристики монокристалла и поликристалла.

- Тема раскрыта с опорой на соответствующие понятия и теоретические положения – 4 балла
- Факты и примеры в полном объеме обосновывают выводы 4 балла
- Ответ характеризуется композиционной цельностью, соблюдена логическая последовательность 3 балла

V. Перечень основной и дополнительной литературы, необходимой для освоения дисциплины

- а) основная литература:
- 1. Шалимова К. В. Физика полупроводников [Электронный ресурс]: учеб. Электрон. дан. Санкт-Петербург : Лань, 2010. 384 с. Режим доступа:

https://e.lanbook.com/book/648.

б) дополнительная литература

1. Епифанов Г.И. Физика твердого тела [Электронный ресурс]: учеб. пособие — Электрон. дан. — Санкт-Петербург : Лань, 2011. — 288 с. — Режим доступа: https://e.lanbook.com/book/2023.

VI. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины

VII. Методические указания для обучающихся по освоению дисциплины

План практических занятий

- 1. Выращивание монокристаллов методом монокристальной зонной плавки. Изучение кристаллографии монокристаллов.
- 2. Выращивание монокристаллов методом Чохральского. Морфология кристаллов.
- 3. Изучение методики зонной очистки и выращивания монокристаллов на установке бестигельной зонной плавки. Изучение кристаллографии монокристаллов.
- 4. Выращивание кристаллов из растворов и гелей.

Методические рекомендации

Предметом оценки является подготовка студентов к занятиям, работа студентов на практических занятиях, выполнение ими тестовых заданий.

Оценки успеваемости студентов проходит в модульную неделю в соответствии с графиков учебного процесса.

Практические задания по демонстрации компетенций заключаются в устных или письменных ответах на поставленные преподавателем или составленным самими студентами вопросы (традиционные или в форме тестов). При этом оценивается обоснованность ответа, ясность и последовательность изложения мысли. Такая демонстрация компетенций проверяет уровень владения теоретическим и практическим материалом.

промежуточный контроль

типовые тесты

- 1. Решение задачи о взаимодействии двух групп симметрии, описывающих физические свойства и взаимодействия.
- 1. Решение должно исключить несовпадающие операции симметрии
- 2. Итоговая группа составляется из тождественных операций симметрии.
- 3. Решение задачи основывается только на экспериментальных данных.
- 4. Итоговая группа симметрии является надгруппой итога умножения групп-сомножителей.
- 2. Что собой представляют чёрнобелые группы симметрии.
- 1. Произвольное сочетание серых и белых операций симметрии.
- 2. Сочетание, основанное на операциях перемножения элементов различных цветов.
- 3. Чёрнобелая группа выводится с помощью классических теорем о взаимодействии операций симметрии с учетом характеристик этих операций.
- 4. Чёрнобелые операции симметрии и основанные на них группы выведены в результате математических кристаллографических операций, а принадлежность кристалла к группе определяется его физическими свойствами.
- 3. Как определить наличие полярных свойств кристалла с помощью таблицы классов кристаллов?
- 1. Все кристаллы, не имеющие центра симметрии.
- 2. Кристаллы аксиальных и инверсионно-примитивных групп.
- 3. Кристаллы, подчиняющиеся предельной группе симметрии ∞ m.
- 4. Кристаллы, подчиняющиеся предельной группе симметрии ∞ m могут иметь полярные свойства, но могут и не иметь их.
- 4. Как определить наличие аксиальных свойств кристалла с помощью таблицы классов кристаллов?
- 1. Все аксиальные группы кристаллов.
- 2. Все полярные группы кристаллов.
- 3. Аксиальные и центральные группы кристаллов.

4. Группы кристаллов, подчинённые предельной группе $\, m \, ($ но они могут и не иметь аксиальных свойств).

 α

Итоговый контроль проводится в форме экзамена, который включает письменные или устные ответы на теоретические вопросы.

Вопросы к экзамену

- 1. Основные свойства кристаллов: однородность, анизотропия, симметрия.
- 2. Симметрические преобразования: виды равенств, преобразования первого и второго рода.

- 3. Основы теории групп: единичная операция, квадрат Кели, подгруппа.
- 4. Типы групп симметрии: одномерные, двумерные, Федоровские.
- 5. Принцип суперпозиции Кюри.
- 6. Принцип Неймана.
- 7. Скалярные свойства кристаллов
- 8. Тензорные свойства кристаллов.
- 9. Оптические свойства кристаллов: оптические поверхности, диэлектрическая проницаемость.
- 10. Магнитная симметрия: серые, чернобелые, белые группы, обращение времени.
- 11. Симметрия подобия.
- 12. Частичная симметрия.
- 13. Предельные группы симметрии.
- 14. Определение полярных классов кристаллов.
- 15. Определение аксиальных классов кристаллов.
- 16. Поляризация.
- 17. Умножение матриц, описывающих инверсию и плоскость симметрии.
- 18. Умножение матриц, описывающих взаимно перпендикулярные плоскости симметрии.
- 19. Умножение матриц, описывающих двойную поворотную ось и перпендикулярную к ней плоскость симметрии.
- 20. Двойное лучепреломление.
- 21. Электрооптический эффект.
- 22. Пьезоэлектричество.

VIII. Перечень педагогических и информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (по необходимости) Лекции, практические занятия, решение задач.

IX. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Наименование	Оснащенность специальных	Перечень лицензионного
специальных*	помещений и помещений	программного обеспечения.
помещений	для самостоятельной работы	Реквизиты
		подтверждающего документа
Учебно-научная	1 Монитор СТХ	Google Chrome – бесплатно
лаборатория	2 Компьютер Intel Original	Kaspersky Endpoint Security 10

радиоэлектроники и микроэлектроники № 25 (170002 Тверская обл., г. Тверь, Садовый пер., д. 35)

LGA1155 Core i5-3470, монитор AOC 23" e2370Sd 3 Компьютер Intel Original LGA1155 Core i5-3470, монитор AOC 23" e2370Sd 4 Осциллограф цифровой WA 102 5 Компьютер iRU Corp 510 I5-2400/4096/500/G210-512/DVD-RW/W7S/монитор E-Machines E220HQVB 21.5" 6 Принтер Samsung лазерный 7 Принтер Samsung лазерный 8 Спектрометр ИКС-29 9 Программно-аппаратный комплекс для микроанализа и морфологического анализа поверхности (микроскоп) 10 Дифрактометр рентгеновский ДСО-2 для уточнения ориентации

монокристаллов

комплекте

78/2

11 Электронно-оптический

12 Тепловизор FLIR T250 в

13 Вольметр цифровой В7-

комплекс для анализа морфологии кристаллов NanoMap-1000WLI

для Windows — Акт на передачу прав №2129 от 25 октября 2016 г. MS Office 365 pro plus - Акт приема-передачи № 369 от 21 июля 2017 Microsoft Windows 10 Enterprise - Акт приема-передачи № 369 от 21 июля 2017

Помещения для самостоятельной работы:

Наименование помещений	Оснащенность помещений для самостоятельной работы	Перечень лицензионного программного обеспечения.
	eumoeromemen puoore	Реквизиты
		подтверждающего документа
Помещение для	1. Компьютер RAMEC STORM	Adobe Acrobat Reader DC -
самостоятельной	C2D 4600/160Gb/ 256mB/DVD-	бесплатно
работы, учебная	RW +Mонитор LG TFT 17"	Cadence SPB/OrCAD 16.6 -
аудитория для	L1753S-SF – 12 IIIT	Государственный контракт на
проведения занятий	2. Мультимедийный комплект	поставку лицензионных
лекционного типа,	учебного класса (вариант № 2)	программных продуктов 103 -
занятий	Проектор Casio XJ-M140,	ГК/09 от 15.06.2009
семинарского типа,	настенный проекц. экран Lumien	Google Chrome - бесплатно
курсового	180*180. ноутбук Dell N4050.	Java SE Development Kit 8 Update
проектирования	сумка 15,6", мышь	45 (64-bit) - бесплатно
(выполнения	3. Коммутатор D-Link	Kaspersky Endpoint Security 10 для
курсовых работ),	10/100/1000mbps 16-potr DGS-	Windows – Акт на передачу прав
групповых и	1016D	№2129 от 25 октября 2016 г.
индивидуальных	4. Видеокамера IP-FALCON EYE	Lazarus 1.4.0 - бесплатно
консультаций,	FE-IPC-BL200P, ОнЛайн Трейд	Lego MINDSTORM EV3 -

текущего контроля	000	бесплатно
и промежуточной	5. Видеокамера IP-FALCON EYE	Mathcad 15 M010 - Акт
аттестации,	FE-IPC-BL200P, ОнЛайн Трейд	предоставления прав ИС00000027
практики,	000	от 16.09.2011
Компьютерный	6. Демонстрационное	MATLAB R2012b - Акт
класс физико-	оборудование комплект	предоставления прав № Us000311
технического	«LegoMidstormsEV3»	от 25.09.2012
факультета.	7. Комплект учебной мебели	Microsoft Express Studio 4 -
Компьютерная	•	бесплатно
лаборатория		МіКТеХ 2.9 - бесплатно
робототехнических		MPICH 64-bit – бесплатно
систем №4а		MSXML 4.0 SP2 Parser and SDK -
(170002 Тверская		бесплатно
обл., г. Тверь,		Microsoft Windows 10 Enterprise -
Садовый пер., д. 35)		Акт приема-передачи № 369 от 21
		июля 2017
		MS Office 365 pro plus - Akt
		приема-передачи № 369 от 21
		июля 2017

Х. Сведения об обновлении рабочей программы дисциплины

№п.п.	Обновленный	Описание внесенных	Дата и протокол
	раздел рабочей	изменений	заседания кафедры,
	программы		утвердившего изменения
	дисциплины		
1.	Раздел IV	Реквизиты «Положения о	Протокол Совета ФТФ №5
		рейтинговой системе	от 31 октября 2017 г.
		обучения и оценки качества	
		учебной работы студентов	
		ТвГУ» и «Положения о	
		промежуточной аттестации	
		(экзаменах и зачетах)	
		студентов ТвГУ»	
2.	Раздел IX	Оснащенность аудиторного	Протокол Совета ФТФ №5
		фонда для проведения	от 31 октября 2017 г
		учебных занятий и	
		самостоятельной работы	
		студентов согласно	
		«Справки МТО ООП»	