Документ подписан простой электронной подписью Информация о владельце:

ФИО: Смирнов Сергей Николаевич Должность: врио ректора

Дата подписания: 26.10.2023 15:40:58 Уникальный программный ключ: ФГБОУ ВО «Тверской государственный университет»

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель ООП

С.М. Дудаков

2023 г.

VHИВЕРСИТЕТ.

Рабочая программа дисциплины (с аннотацией)

КОМПЛЕКСНЫЙ АНАЛИЗ

Направление подготовки 15.03.06 МЕХАТРОНИКА И РОБОТОТЕХНИКА

Профиль подготовки Интеллектуальное управление в мехатроннных и робототехнических системах

Для студентов 3-го курса Формы обучения - очная

Составитель: к.ф. м.н. Василенко С.И.

І. Аннотация

1. Цель и задачи дисциплины

Цель освоения дисциплины: дать студентам систематические знания по методам комплексного анализа и научить их применять эти знания к решению задач математического моделирования и теории управления.

Задачами освоения дисциплины являются:

- приобретение студентами знаний основных понятий и методов теории функций комплексного переменного.
- приобретение студентами навыков решения типовых задач комплексного анализа.
- приобретение студентами знаний об основных сферах применения комплексного анализа в математическом моделировании и теории управления.

2. Место дисциплины в структуре ООП

Данная дисциплина относится к разделу «Математический» обязательной части Блока 1.

Для изучения этой дисциплины необходимы базовые знания, полученные в результате изучения курсов математического анализа, алгебры, дифференциальных уравнений.

Знания, полученные при изучении комплексного анализа, могут быть использованы при изучении дисциплины «Численные методы», при выполнении научно-исследовательской работы.

3. Объем дисциплины: 3 зачетных единицы, 108 академических часов, в том числе:

контактная аудиторная работа: лекции 30 часа, практические занятия 30 часов;

	контактная	внеаудиторная	работа:	контроль	самостоятельной	работы		
C	0, в том числе курсовая работа0;							
	самостоятельная работа: 48 часов, в том числе контроль 0 часов.							

4. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Планируемые результаты освоения образовательной программы (формируемые компетенции)	Планируемые результаты обучения по дисциплине
ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности	ОПК-1.1 Демонстрирует знания основ математики, физики, вычислительной техники и программирования ОПК-1.2 Демонстрирует навыки использования знаний физики и математики для решения задач теоретического и прикладного характера ОПК-1.3 Применяет методы математического и компьютерного моделирования, средства автоматизированного проектирования в теоретических и расчетно-
ПК-1 Способен участвовать в качестве исполнителя в научно-исследовательских разработках новых робототехнических и мехатронных систем	экспериментальных исследованиях ПК-1.1 Разрабатывает математические модели мехатронных и робототехнических систем, их подсистем и отдельных элементов и модулей

- **5. Форма промежуточной аттестации и семестр прохождения:** зачет, 5 семестр.
 - 6. Язык преподавания русский.
- П. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Учебная программа –	Всего		Контактная работа (час.)			Самостояте	
наименование разделов и тем (час.		Лекции		Прак	тическ	Контроль	льная
				ие з	анятия	самостоят	работа, в
					T	ельной	том числе
		всего	в т.ч. практическая подготовка	всего	в т.ч. практическая подготовка	работы (в том числе курсовая работа)	Контроль (час.)
1. Алгебра комплексных чисел							
и применение комплексных	20	6		6		_	8
чисел для решения							
физических задач.							
2. Дифференцирование и							
интегрирование регулярных	22	6		8		_	8
функций комплексного							
переменного	20						0
3. Ряды Тейлора и Лорана.	20	6		6		_	8
4. Теория вычетов	18	6		6		_	6
5. Конформные изображения	12	2		2			8
6. Операционное исчисление	16	4		2			10
ИТОГО	108	30		30		_	48

III. Образовательные технологии

Учебная программа –	Вид занятия	Образовательные технологии		
наименование разделов и				
тем (в строгом				
соответствии с разделом				
ІІ РПД)				
1. Алгебра комплексных	Лекции, практические	1. Изложение теоретического		
чисел и применение	занятия	материала		
комплексных чисел для		2. Решение задач		
решения физических задач.				
2. Дифференцирование и	Лекции, практические	1. Изложение теоретического		
интегрирование	Занятия	материала		
регулярных функций	занятия	2. Решение задач		
комплексного переменного				
3. Ряды Тейлора и Лорана.	Лекции, практические	1. Изложение теоретического		
	Занятия	материала		
	запятия	2. Решение задач		
4. Теория вычетов	Лекции, практические	1. Изложение теоретического		
	занятия	материала		
	запліня	2. Решение задач		
5. Конформные	Лекции, практические	1. Изложение теоретического		
изображения	221197719	материала		
	занятия	2. Решение задач		

6. Операционное	Лекции,	практические	1.	Изложение теоретического
исчисление	занятия		2.	материала Решение задач

Преподавание учебной дисциплины строится на сочетании лекций, практических занятий и самостоятельной работы студентов. В процессе освоения дисциплины используются следующие образовательные технологии, способы и методы формирования компетенций: традиционные лекции, практические занятия в диалоговом режиме. Дисциплина предусматривает выполнение контрольных работ, собеседование по теоретическим вопросам.

IV. Оценочные материалы для проведения текущей и промежуточной аттестации

Для проведения текущей и промежуточной аттестации:

ОПК-1 Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности

ОПК-1.1 Знает основные положения и концепции математических и естественных наук

- 1. Пояснить применение аналитических функций комплексного переменного к моделированию фильтров.
- 2. Объяснить явление физического резонанса.
- 3. Построить схему алгоритма быстрого преобразования Фурье.

Способ проведения – устный.

Критерии оценивания:

Пояснение дано полно и правильно – 3 балла.

Пояснение дано с незначительными погрешностями – 2 балла.

Пояснение дано с существенными неточностями – 1 балл.

Пояснение не дано – 0 баллов.

ОПК-1.2 Решает типовые математические и естественнонаучные задачи

1. Используя теорему о вычетах, вычислить $\int_{c} \frac{e^{z}}{z^{2}(z-9)} dx$ по контуру $c = \{|z| = 4\}$

- 2. Используя метод неопределенных коэффициентов и формулу суммы геометрической прогрессии, разложить функцию $f(z) = \frac{1}{(1-z)(z+2)} \,_{\rm B} \,_{\rm PRJ}$ Лорана в области |z| < 2.
- 3. Используя аппарат комплексного анализа, вычислить интеграл $I = \int_{-\infty}^{\infty} \frac{x dx}{\left(x^2 + 4x + 13\right)^2} \, .$

Способ проведения – письменный.

Критерии оценивания:

Задача решена правильно с помощью аппарата комплексного анализа — 5 балла.

Задача решена с незначительными погрешностями – 4 балла.

Задача решена с существенными неточностями – 3 балл.

Задача не решена или не применен аппарат комплексного анализа -0 баллов.

ОПК-1.3 Работает со стандартными математическими моделями при решении профессиональных задач

- 1. Используя операционное исчисление, решить задачу Коши для дифференциального уравнения x''(t) + x(t) = 0 с начальными условиями x(0) = 1, x'(0) = 0.
- 2. Найти оригинал заданного изображения $F(p) = \frac{1}{p^2 + 4p + 5}$
- 3. Используя условия Коши-Римана, найти аналитическую функцию комплексного переменного $f(z) = u(x, y) + i \cdot v(x, y)$ по заданной действительной части $u(x, y) = y^3 3x^2y$.
- 4. Найти изображение по Лапласу функции $f(t) = \sin^2 t$.

Способ проведения – письменный.

Критерии оценивания:

Метод применен правильно – 5 балла.

Метод применен с незначительными погрешностями – 4 балла.

Метод применен с существенными неточностями -3 балл. Метод не применен -0 баллов.

V. Учебно-методическое и информационное обеспечение дисциплины

1) Рекомендуемая литература

Основная

- 1. Пантелеев, А.В. Теория функций комплексного переменного и операционное исчисление в примерах и задачах [Электронный ресурс]: учебное пособие / А.В. Пантелеев, А.С. Якимова. Электрон. дан. Санкт-Петербург: Лань, 2015. 448 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=67463
- 2. Карасев, И.П. Теория функций комплексного переменного: учебное пособие / И.П. Карасев. М.: Физматлит, 2008. 215 с. ISBN 978-5-9221-0960-4; [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=68139

Дополнительная

- 1. Теория функций комплексного переменного: учебник / Е.С. Половинкин. М.: ИНФРА-М, 2018. 254 с. (Высшее образование: Бакалавриат). www.dx.doi.org/10.12737/6014. Режим доступа: http://znanium.com/go.php?id=945532
- 2. Асташова, И.В. Функциональный анализ: учебно-методический комплекс / И.В. Асташова, В.А. Никишкин. 3-е изд., испр. и доп. Москва: Евразийский открытый институт, 2011. 110 с. ISBN 978-5-374-00486-1; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=90883

2) Программное обеспечение

Компьютерный класс факультета прикладной математики и кибернетики № 4б					
(170002, Тверская обл., г.Тверь, Садовый переулок, д.35)					
Adobe Acrobat Reader DC - Russian бесплатно					
Apache Tomcat 8.0.27	бесплатно				
Cadence SPB/OrCAD 16.6	Государственный контракт на поставку лицензионных программных продуктов 103 - ГК/09 от 15.06.2009				
GlassFish Server Open Source Edition 4.1.1	бесплатно				
Google Chrome	бесплатно				

Java SE Development Kit 8 Update 45 (64-bit)	бесплатно			
JetBrains PyCharm Community Edition 4.5.3	бесплатно			
JetBrains PyCharm Edu 3.0	бесплатно			
Kaspersky Endpoint Security 10 для Windows	Акт на передачу прав ПК545 от 16.12.2022			
Lazarus 1.4.0	бесплатно			
Mathcad 15 M010	Акт предоставления прав ИС00000027 от 16.09.2011			
MATLAB R2012b	Акт предоставления прав № Us000311 от 25.09.2012			
Многофункциональный редактор ONLYOFFICE бесплатное ПО	бесплатно			
OC Linux Ubuntu бесплатное ПО	бесплатно			
MiKTeX 2.9	бесплатно			
MSXML 4.0 SP2 Parser and SDK	бесплатно			
NetBeans IDE 8.0.2	бесплатно			
NetBeans IDE 8.2	бесплатно			
Notepad++	бесплатно			
Oracle VM VirtualBox 5.0.2	бесплатно			
Origin 8.1 Sr2	договор №13918/M41 от 24.09.2009 с ЗАО «СофтЛайн Трейд»			
Python 3.1 pygame-1.9.1	бесплатно			
Python 3.4 numpy-1.9.2	бесплатно			
Python 3.4.3	бесплатно			
Python 3.5.1 (Anaconda3 2.5.0 64-bit)	бесплатно			
WCF RIA Services V1.0 SP2	бесплатно			
WinDjView 2.1	бесплатно			
R Studio	бесплатно			
Anaconda3 2019.07 (Python 3.7.3 64-bit)	бесплатно			

- 3) Современные профессиональные базы данных и информационные справочные системы
- 1. **36C «ZNANIUM.COM»** <u>www.znanium.com</u>;
- 2. ЭБС «Университетская библиотека онлайн» https://biblioclub.ru/:
- 3. **ЭБС «Лань»** http://e.lanbook.com.

4) Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Интернет-университет http://www.intuit.ru

VI. Методические материалы для обучающихся по освоению дисциплины

Вопросы к зачету

- 1. Понятие о комплексных числах. Операции над комплексными числами.
- 2. Геометрическая интерпретация комплексных чисел. Модуль и аргумент комплексного числа. Геометрический смысл возведения комплексного числа в степень и извлечения корня.
- 3. Понятие функции комплексного переменного. Непрерывность, дифференцируемость и аналитичность. Условия Коши-Римана.
- 4. Элементарные функции комплексного переменного.
- 5. Физические приложения функций комплексного переменного.
- 6. Интегрирование функций комплексного переменного. Теорема Коши.
- 7. Теорема об аналитичности интеграла от функции комплексного переменного. Теорема о первообразных.
- 8. Интегрирование функций комплексного переменного в многосвязных областях.
- 9. Формула Коши и теорема о среднем.
- 10. Принцип максимума и лемма Шварца.
- 11. Понятие о равномерной сходимости. Свойства равномерно сходящихся последовательностей непрерывных функций.
- 12. Высшие производные аналитических функций. Неравенства Коши.
- 13. Ряды Тейлора аналитических функций.
- 14. Степенные ряды. Теорема об аналитичности суммы степенного ряда. Теорема о дифференцировании рядов. Теорема Абеля. Радиус сходимости ряда.
- 15. Нули аналитических функций. Теорема единственности.
- 16. Ряды Лорана.
- 17. Особые точки аналитических функций.

- 18. Понятие вычета. Вычисление интегралов с использованием вычетов.
- 19. Логарифмический вычет. Теорема о логарифмической производной. Принцип аргумента.
- 20. Понятие бесконечно удаленной точки. Вычет функции в этой точке.
- 21. Операционный метод. Преобразование Лапласа. Обратное преобразование.
- 22. Свойства преобразования Лапласа.
- 23. Применение преобразования Лапласа к решению дифференциальных и интегральных уравнений.
- 24. Применение преобразования Лапласа к расчету электрических контуров.
- 25. Понятие конформного отображения.

Примерные задачи для зачета

- 1. $\arcsin(i) = x + iy$, x = ? y = ?
- 2. |z-1|+|z+1|=3. Найти геометрическое место точек.
- 3. Исследовать дифференциал функции f(z) = |z| в (.) z=0.
- 4. f(z) = u(x,y) + iv(x,y) $u(x,y) = y^3 3x^2y$. Найти f(z), дифференцируемую в \forall (.) z.
- 5. Исследовать дифференциал функции $f(z) = z^n$.
- 6. Найти разложение $f(z) = \frac{z^3}{(z^2 4)^2}$ в ряд Лорана в окрестности точки $z_0 = -z$.
- 7. Вычислить $\int_{c} \frac{e^{z}}{z^{2}(z=9)} dx$ по контуру $c = \{|z| = 4\}$
- 8. Вычислить $\int_{0}^{\infty} \frac{\cos x}{x^4 + 5x^2 + 4} dx$.
- 9. Найти вычет в точке $z = \infty$, $f(z) = z \cdot \cos \frac{\pi}{z}$.
- 10.Вычислить $\arcsin(1+i) = x+iy$.

11.Вычислить
$$\int\limits_{-\pi}^{\pi}\,d\varphi\Bigg(\frac{1+2\cos\varphi}{5+4\cos\varphi}\Bigg)$$

12.Вычислить
$$\int_{0}^{\infty} \frac{x^2 \alpha x}{(x^2 + a^2)^2}$$
.

Требования к рейтинг-контролю.

Расчет баллов за семестр в целом

- 1. Посещение лекций 14 баллов (по 1 баллу за занятие)
- 2. Посещение практических занятий 16 баллов (по 1 баллу за занятие).
- 3. Решение задач у доски на практических занятиях 30 баллов (по 3 балла за задачу, решенную у доски, но не более 15 баллов за каждый модуль).
- 4. Контрольные работы -20 баллов (2 контрольные работы).
- 5. Собеседование по теоретическим вопросам 20 баллов.

Распределение баллов по модулям

<u>Модуль 1.</u> Темы – «Алгебра комплексных чисел», «Дифференцирование и интегрирование аналитических функций», «Ряды Лорана».

- 1. Посещение лекций 6 баллов;
- 2. Посещение практических занятий 8 баллов;
- 3. Решение задач на практических занятиях 15 баллов;
- 4. Контрольная работа 10 баллов.

Всего 39 баллов.

<u>Модуль 2.</u> Темы – «Теория вычетов», «Конформные отображения», «Операционное исчисление».

- 1. Посещение лекций 8 баллов;
- 2. Посещение практических занятий 8 баллов;
- 3. Решение задач на практических занятиях 15 баллов;
- 4. Контрольная работа 10 баллов;
- 5. Собеседование по теоретическим вопросам -20 баллов.

Всего 61 балл.

Важной составляющей данного раздела РПД являются требования к рейтинг-контролю с указанием баллов, распределенных между модулями и видами работы обучающихся.

Максимальная сумма баллов по учебной дисциплине, заканчивающейся зачетом, по итогам семестра составляет 100 баллов (50 баллов - 1-й модуль и 50 баллов - 2-й модуль).

Студенту, набравшему 40 баллов и выше по итогам работы в семестре, в экзаменационной ведомости и зачетной книжке выставляется оценка «зачтено». Студент, набравший до 39 баллов включительно, сдает зачет.

Распределение баллов по модулям устанавливается преподавателем и может корректироваться.

Примеры решений типовых задач

Задача 1. разложить функцию $f(z) = \frac{1}{(1-z)(z+2)}$ в ряд Лорана в окрестности точки $z_0 = 0$ в области 1 < |z| < 2.

Решение. Методом неопределенных коэффициентов устанавливаем, что

$$\frac{1}{(1-z)(z+2)} = \frac{1}{3} \left(\frac{1}{1-z} + \frac{1}{z+2} \right).$$

1. Рассмотрим $f_1(z) = \frac{1}{1-z}$ для |z| > 1 имеем

$$\frac{1}{1-z} = -\frac{1}{z} \left(\frac{1}{1-\frac{1}{z}} \right) = -\sum_{n=1}^{\infty} \frac{1}{z^n}.$$

Пояснение. Дробь $\frac{1}{1-\frac{1}{z}}$ представляет сумму геометрической

прогрессии, имеющей показатель $q = \frac{1}{z}$ и |q| < 1.

- 2. Рассмотрим $f_2(z) = \frac{1}{z+2} = \frac{1}{2} \frac{1}{1-(-\frac{z}{2})} = \sum_{n=0}^{\infty} \frac{\left(-1\right)^n z^2}{2^{n+1}}$.
- 3. Объединив 1. и 2. получим окончательный результат:

$$f(z) = \frac{1}{3} \left(f_1(z) + f_2(z) \right) = -\frac{1}{3} \left(\sum_{n=1}^{\infty} \frac{1}{z^n} - \sum_{n=0}^{\infty} \frac{\left(-1\right)^n z^2}{2^{n+1}} \right).$$

Задача 2. Функция комплексного переменного $f(z) = u(x, y) + i \cdot v(x, y)$ аналитическая $u(x, y) = y^3 - 3x^2y$. Найти f(z).

Решение.
$$\frac{\partial^2 u}{\partial x^2} = -6y$$
, $\frac{\partial^2 u}{\partial y^2} = 6y$.

Используем первое условие Коши-Римана для аналитической функции: $\frac{\partial u}{\partial y} = \frac{\partial u}{\partial x} = -6xy \, .$

Решив уравнение $\frac{\partial v}{\partial y} = -6xy$, имеем

$$v = -3xy^2 + g(x)$$

$$\frac{\partial v}{\partial x} = 3y^2 + g'(x) \tag{1}$$

Используем второе условие Коши-Римана:

$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = -3y^2 + 3x^2 \tag{2}$$

Объединив (1) и (2), получим

$$-3y^{2} + 3x^{2} = 3y^{2} + g'(x),$$

$$g'(x) = 3x^{2}, g(x) = 3x^{3} + c,$$

$$v(x, y) = 3xy^{2} + x^{3} + c,$$

$$f(z) = (y^{3} - 3x^{2}y) + i(-3xy^{2} + x^{3}) + c = z^{3} + c, (z = x + iy)$$

Задача 3. Найти главную часть ряда Лорана $f(z) = \frac{1}{z^2 + 1}$ в окрестности точки $z_0 = i$.

Peшение. Представим $f(z) = \frac{1}{z-i}g(z)$, где $g(z) = \frac{1}{z+i}$ аналитическая в окрестности $z_0 = i$ функция и может быть разложена в ряд Тейлора:

$$g(z) = \frac{1}{2i + (z - 1)} = \frac{1}{2i} + \frac{1}{4}(z - i) + \dots$$

Отсюда главная часть ряда Лорана:

$$f_1(z) = \frac{1}{2i} \cdot \frac{1}{z-i}.$$

Задача 4. Вычислить вычет функции f(z) = ctg(z) в точках $z_k = k\pi$. Решение. Точки $z_k = k\pi$ являются простыми полюсами для f(z) и можно воспользоваться следующей формулой для простых полюсов:

$$f(z) = \frac{\varphi(z)}{\psi(z)} = \frac{\cos(z)}{\sin(z)}$$

$$res_{z=z_k} f(z) = \frac{\varphi(z_k)}{\psi'(z_k)} = \frac{\cos(\pi k)}{\cos(\pi k)} = 1$$

Задача 5. вычислить интеграл $I = \int_{0}^{2\pi} \frac{d\varphi}{1 - 2a \cdot \cos \varphi + a^2}$, |a| < 1.

Pешение. Сделаем замену переменных $z = e^{i\varphi}$, получим:

$$I = \int_{|z|=1} \frac{idz}{az^2 - (a^2 + 1)z + a}.$$

Уравнение $az^2 - (a^2 + 1)z + a = 0$ имеет корни $z_1 = a$ и $z_2 = 1/a$, которые являются простыми полюсами подынтегральной функции. Так как |a| < 1, то в круге |z| = 1 находится только точка $z_1 = a$. По теореме о вычетах имеем:

$$I = 2\pi \cdot i \cdot res_{z=a} \frac{i}{az^2 - (a^2 + 1)z + a} = \frac{z\pi i \cdot i}{a^2 - 1} = \frac{2\pi}{1 - a^2}.$$

Задача 6. Вычислить интеграл
$$I = \int_{-\infty}^{\infty} \frac{x dx}{\left(x^2 + 4x + 13\right)^2}$$
.

Решение. Подынтегральная функция является рациональной. Для таких функций имеет место формула:

$$I = 2\pi \cdot i \sum_{\substack{k \ z=a \ {
m Im} z_k > 0}} f(z)$$
, где $f(z) = \frac{z}{z^2 + 4z + 13}$.

f(z) имеет два кратных полюса (кратности 2) $z_1 = -2 + 3i$ и $z_2 = -2 - 3i$ ${\rm Im}\,z_2 < 0$, поэтому имеем :

$$I = 2\pi \cdot i \sum_{k} rest(z) = \frac{2\pi i}{i} \frac{4}{6^3} = \frac{\pi}{27}$$
.

VII. Материально-техническое обеспечение

Для аудиторной работы.

Учебная аудитория № 7 (170002, Тверская обл., г.Тверь, Садовый переулок, д.35)	Набор учебной мебели, экран, проектор.
Учебная аудитория № 20 (170002, Тверская обл., г.Тверь, Садовый переулок, д.35)	Набор учебной мебели, экран, проектор

Для самостоятельной работы.

Помещение для	Компьютер, экран, проектор,
самостоятельной	кондиционер.
работы обучающихся:	
Компьютерный класс	
факультета ПМиК	
№ 46	
170002, Тверская обл.,	
г.Тверь, Садовый	
переулок, д.35	

VIII. Сведения об обновлении рабочей программы дисциплины

№п.п.	Обновленный раздел		Описание внесенных	Реквизиты документа,	
	рабочей программы		изменений	утвердившего	
	дисциплины			изменения	
1	V. Учебно-методическое	И	Внесены изменения в	От 24.08.2023 года,	
	информационное		программное	протокол № 1 ученого	
	обеспечение дисциплины		обеспечение	совета факультета	
	2) Программное				
	обеспечение				