Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Смирнов Сергей Николаевич

Должность: врио ре**тиранистерство науки и высшего образования Российской Федерации** Дата подписания: 10.10.2023 09:45:21

Уникальный программный ключ**ФГБОУ ВО «Тверской государственный университет»** 69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель ООП

А.А. Голубев

иверситет

Рабочая программа дисциплины (с аннотацией)

Интегральные уравнения и некорректные задачи естествознания

Направление подготовки

01.03.01 Математика

Профиль подготовки

Преподавание математики и информатики

Для студентов 4 курса

Форма обучения очная

Составитель:

к.ф.-м.н., доцент Граф С.Ю.

І. Аннотация

1. Цель и задачи дисциплины

Цель дисциплины — выработать у студентов глубокие знания основ теории интегральных уравнений, умение применять эти знания при исследовании и решении конкретных уравнений и систем, встречающихся в различных областях естествознания.

Задачи:

- сформировать у студента прочные знания основ теории интегральных уравнений;
- воспитать у студента умение применять методы теории интегральных уравнений в задачах естествознания и техники;
- развить у студента культуру мышления, математической культуры и интуиции;
- развить у студента навыки самостоятельной научно-исследовательской работы.

2. Место дисциплины в структуре образовательной программы

Дисциплина относится к формируемой участниками образовательных отношений части блока 1 — к дисциплинам, углубляющим универсальные компетенции и формирующим профессиональные компетенции.

Курс имеет логические и содержательно-методические взаимосвязи со всеми дисциплинами математического, естественнонаучного и профессионального циклов ООП и необходима для изучения этих дисциплин. Для освоения дисциплины необходимы устойчивое знание школьного курса математики, наличие устойчивых навыков работы с объектами элементарной математики, а также основ курса математического анализа, функционального анализа и теории функций комплексного переменного.

Дисциплина изучается на 4 курсе (7, 8 семестры).

3. Объем дисциплины: 7 зачетных единиц, 252 академических часа, **в том числе:**

контактная аудиторная работа: 111 часов,

в том числе: лекции 47 часов, в том числе практическая подготовка 0 часов; практические занятия 64 часов, в том числе практическая подготовка 12 часов; самостоятельная работа: 141 часов, в том числе контроль 27 часов.

4. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Планируемые результаты освоения	Планируемые результаты обучения по дисциплине
образовательной программы	
(формируемые компетенции)	
ПК-2 Способен осуществлять	ПК-2.1 Актуализирует базовые знания,
научно-исследовательскую работу на	полученные в области математических и
основе математических и	естественных наук, программирования и
естественных наук, основ	информационных технологий
программирования и	ПК-2.2 Формулирует и решает стандартные
информационных технологий	задачи в собственной научно-исследовательской
	деятельности в математике и информатике

5. Форма промежуточной аттестации и семестр прохождения экзамен (8 семестр).

6. Язык преподавания: русский.

П. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

		Контактная работа (час.)					
		77		Пра	актичес-		
	(JI	екции	кие	занятия	Конроль	Самостоя-
Учебная программа – наименование разделов и тем	Всего (час.)	всего	в т.ч. практическая подготовка	всего	в т.ч. практическая подготовка	самостоя- тельной работы (в том числе курсовая работа	тельная работа (в т.ч. контроль)
Раздел 1	10	2	0	2	0	0	6
Определение и							
классификация							
линейных							
интегральных							
уравнений.							
Классификация							
интегральных							
уравнений. Задачи,							
приводящие к интегральным							
уравнениям.							
Раздел 2	16	4	0	4	0	0	8
Линейные операторы	10	.	Ü	•	O		O
в евклидовых							
пространствах.							
Скалярное							
произведение, норма и							
метрика в линейном							
пространстве.							
Неравенство Коши-							
Буняковского.							
Полнота пространства.							
Примеры.		_		_			
Ограниченность,	20	6	0	6	0	0	8
непрерывность и							
полная непрерывность							
линейного оператора в							
евклидовом							
пространстве.							

Симметрические							
операторы. Примеры.							
Раздел 3	20	4	0	6	4	0	10
Собственные							
функции и							
собственные числа							
вполне непрерывного							
симметрического							
линейного оператора.							
Теорема о							
существовании							
собственного числа и							
собственного вектора							
у вполне							
непрерывного							
симметрического							
линейного оператора.							
Структура множества	20	4	0	6	2	0	10
собственных чисел и							
собственных векторов							
вполне непрерывного							
симметрического							
линейного оператора в							
евклидовом							
пространстве.							
Раздел 4	20	4	0	6	0	0	10
Уравнение							
Фредгольма второго							
рода.							
Структура множества							
собственных чисел и							
собственных векторов							
интегрального							
уравнения							
Фредгольма второго							
рода.							
Метод Келлога	20	4	0	6	0	0	10
нахождения							
собственного вектора							
и собственного числа							
уравнения Фредгольма							
второго рода.							
Примеры.							
Вырожденные ядра.	18	4	0	4	0	0	10
Теорема о							

as fampayyyy yy yyyaray							
собственных числах							
вырожденных ядер.							
Примеры.	22	4	0	1	0	0	1.4
Ряды Фурье по	22	4	0	4	0	0	14
системе собственных							
функций оператора							
Фредгольма.							
Теорема Гильберта-							
Шмидта.							
Повторные операторы	22	4	O	4	0	0	14
Фредгольма и							
повторные ядра.							
Представление							
повторных ядер							
рядами Фурье по							
системе собственных							
функций оператора							
Фредгольма.							
Положительно							
определенные ядра.							
Теорема Мерсера о							
представлении							
положительно							
определенных ядер							
рядами Фурье по							
системе собственных							
функций оператора							
Фредгольма.							
Раздел 5	30	2	0	6	2	0	22
Интегральные							
уравнения как							
некорректно							
поставленные							
задачи.							
Понятие о							
некорректно							
поставленных задачах.							
Устойчивость решения							
по Ляпунову.							
Примеры.							
Интегральные	34	5	0	10	4	0	19
уравнения Фредгольма			J		,		
первого рода как							
некорректно							
поставленные задачи.							
поставленные задачи.				I			

Методы							
регуляризации							
решения.							
Сглаживающий							
функционал Тихонова.							
	252	47	0	64	12	0	141

Ш. Образовательные технологии

Преподавание учебной дисциплины строится на сочетании аудиторных занятий и различных форм самостоятельной работы студентов.

Также на занятиях практикуется самостоятельная работа студентов, выполнение заданий в малых группах, письменные работы, моделирование дискуссионных ситуаций, работа с раздаточным материалом, привлекаются ресурсы сети INTERNET. Курс предусматривает выполнение контрольных и самостоятельных работ, письменных домашних заданий. В качестве форм контроля используются различные варианты взаимопроверки и взаимоконтроля.

Интерактивное взаимодействие студентов с одной стороны и преподавателя с другой, а также студентов между собой и с преподавателем во время практических занятий.

Образовательные технологии

- 1. Дискуссионные технологии
- 2. Информационные (цифровые)
- 3. Технологии развития критического мышления

Современные методы обучения

- 1. Активное слушание
- 2. Лекция (традиционная)

IV. Оценочные материалы для проведения текущей и промежуточной аттестации

1. Оценочные материалы для проведения текущей аттестации Примеры тем курсовых работ

- 1. Задачи, приводящие к интегральным уравнениям.
- 2. Структура множества собственных чисел и собственных векторов вполне непрерывного симметрического линейного оператора в евклидовом пространстве.
- 3. Ряды Фурье по системе собственных функций оператора Фредгольма.
- 4. Методы регуляризации решения некорректных задач. Сглаживающий функционал Тихонова.
- 5. Интегральные уравнения Фредгольма первого рода как некорректно поставленные задачи.

Примеры тем исследовательских работ

1. Численное решение интегральных уравнений методом Келлога (с использованием средств математических пакетов). Решить интегральное уравнение Фредгольма методом Келлога (найти два первых собств. числа и соответствующие им решения). Произвести 5 итераций:

$$y(x) = \lambda \int_{0}^{1} \sqrt{x+t} y(t) dt.$$

Построить графики начального приближения и приближений на каждой итерации.

2. Решить интегральное уравнение Фредгольма с вырожденным ядром:

$$y(x) = \lambda \int_{0}^{1} (x - y)^{2} y(t) dt.$$

Построить графики решений.

Банк контрольных вопросов и заданий

Типовые задачи

1. Решить интегральные уравнения Фредгольма

a)
$$\lambda \int_{0}^{1} x t y(t) dt = y(x);$$

6)
$$\lambda \int_{0}^{1} (x^{2}t^{2} + 1) y(t) dt = y(x);$$

$$\mathbf{B)} \ \lambda \int_{0}^{\pi} \cos(x+t) \ y(t) \ dt = y(x);$$

$$\Gamma) \lambda \int_{0}^{1} (x^{2} + t^{2}) y(t) dt = y(x);$$

2. Проверить данные операторы на полную непрерывность и непрерывность

a)
$$Ay(x) = y'(x), y \in C^{1}[a,b];$$

6)
$$Ay(x) = \int_{0}^{1} e^{x+t} \cdot (x^2 + t^2) y(t) dt \ y \in L^2[a,b];$$

B)
$$Ay(x) = y(x), y \in L^2[a,b];$$

Типовые тесты

1. Укажите какие из приведенных функций являются вырожденными ядрами оператора Фредгольма.

a)
$$\sin(x-t)$$

6)
$$e^{2(x+t)}$$

B)
$$ln(x+t)$$

$$\Gamma) \frac{1}{(x-1)(t-2)}$$

Выберите один из 4-х вариантов ответа

- 1. a), г)
- 2. б), в)
- 3. a), б), г)
- 4. б), в)
- 2. Сколько действительных собственных чисел с учетом кратности может иметь симметричный вполне непрерывный оператор, действующий из пространства ${\bf R}^n$ в ${\bf R}^n$

Выберите один из 4-х вариантов ответа

- 1. *n*
- 2. 2*n*
- 3. не более *n*
- 4. *n*!

2. Оценочные материалы для проведения промежуточной аттестации

Планируемый образовательный результат (компетенция, индикатор)	Типовые контрольные задания	Критерии оценивания и шкала оценивания
ПК-2 Способен осуществлять научно- исследовательскую работу на основе математических и естественных наук, основ программирования и информационных технологий ПК-2.1 Актуализирует базовые знания, полученные в области математических и естественных наук, программирования и информационных технологий ПК-2.2 Формулирует и решает стандартные задачи в собственной научно-исследовательской деятельности в математике и информатике	1. Привести классификацию линейных интегральных уравнений; 2. Проверить данные операторы на полную непрерывность и непрерывность $Ay(x) = y'(x), y \in C^1[a,b];$ 3. Решить интегральное уравнение Фредгольма с вырожденным ядром: $y(x) = \lambda \int_0^1 (e^{x+t} - 1)y(t)dt.$	 Полно и правильно даны ответы на все поставленные вопросы, приведены необходимые примеры; студент показывает понимание излагаемого материала — 30 — 40 баллов Полно и правильно даны ответы на все поставленные вопросы, приведены примеры, однако имеются неточности; в целом студент показывает понимание изученного материала — 20 — 29 баллов Ответ дан в основном правильно, но недостаточно аргументированы выводы, приведены не все необходимые примеры — 10 - 19 баллов Даны неверные ответы на поставленные вопросы — 0 - 9 баллов
		Полностью владеет

	теоретическими и
	практическими навыками
	применения математических
	методов к решению
	профессиональных задач – 30
	– 40 баллов
•	Знает основные
	математические понятия и
	умеет применять их на
	практике $-20 - 29$ баллов
•	Умеет применять на практик
	простейшие стандартны
	математические методы – 45
	64%
•	Имеет общее представ-
	ление, но не владеет
	материалом – 10 - 19 баллов
•	Не владеет – 0 - 9 баллов

V. Учебно-методическое и информационное обеспечение дисциплины

1) Рекомендуемая литература

а) Основная литература:

- 1. Краснов, М. Л. Интегральные уравнения: введение в теорию / М. Л. Краснов. Москва : Наука, 1975. 303 с. : ил. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=457126
- 2. Привалов, И. И. Интегральные уравнения : учебник для вузов / И. И. Привалов. 4-е изд., стер. Москва : Издательство Юрайт, 2021. 253 с. (Высшее образование). ISBN 978-5-534-01552-2. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/469968
- 3. Васильева, А. Б. Интегральные уравнения : учебник / А. Б. Васильева, Н. А. Тихонов. 3-е изд.,стер. Санкт-Петербург : Лань, 2021. 160 с. ISBN 978-5-8114-0911-2. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/167734

б) Дополнительная литература:

1. Интегральные уравнения : учебное пособие / О. В. Новоселов, Е. И. Яковлев, Р. В. Ульверт [и др.]. — Красноярск : Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева, 2020. — 122 с. — Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. — URL: https://www.iprbookshop.ru/107201.html

2) Программное обеспечение

Google Chrome	бесплатное ПО
Яндекс Браузер	бесплатное ПО
Kaspersky Endpoint Security 10	акт на передачу прав ПК545 от 16.12.2022
Многофункциональный	бесплатное ПО
редактор ONLYOFFICE	
OC Linux Ubuntu	бесплатное ПО

3) Современные профессиональные базы данных и информационные справочные системы

№ п/п	Вид информационного ресурса, наименование информационного ресурса	Адрес (URL)
1	ЭБС «ZNANIUM.COM»	https://znanium.com/
2	ЭБС «ЮРАИТ»	https://urait.ru/
3	ЭБС «Университетская библиотека онлайн»	https://biblioclub.ru/
4	ЭБС IPR SMART	http://www.iprbookshop.ru/
5	ЭБС «ЛАНЬ»	http://e.lanbook.com
6	ЭБС ТвГУ	http://megapro.tversu.ru/megapro/Web
7	Репозитарий ТвГУ	http://eprints.tversu.ru
8	Ресурсы издательства Springer Nature	http://link.springer.com/
9	СПС КонсультантПлюс (в сети ТвГУ)	

VI. Методические материалы для обучающихся по освоению дисциплины

Учебная программа курса

Раздел 1

Определение и классификация линейных интегральных уравнений. Классификация интегральных уравнений. Задачи, приводящие к

интегральным уравнениям.

Раздел 2

Линейные операторы в евклидовых пространствах.

Скалярное произведение, норма и метрика в линейном пространстве. Неравенство Коши-Буняковского. Полнота пространства. Примеры.

Ограниченность, непрерывность и полная непрерывность линейного оператора в евклидовом пространстве. Симметрические операторы. Примеры. Оператор Фредгольма.

Раздел 3

Собственные функции и собственные числа вполне непрерывного

симметрического линейного оператора.

Теорема о существовании собственного числа и собственного вектора у вполне непрерывного симметрического линейного оператора. Структура множества собственных чисел и собственных векторов вполне непрерывного симметрического линейного оператора в евклидовом пространстве.

Раздел 4

Уравнение Фредгольма второго рода.

собственных чисел собственных Структура множества И векторов Метод Келлога уравнения Фредгольма второго интегрального рода. собственного вектора и нахождения собственного числа уравнения Фредгольма второго рода. Примеры. Вырожденные ядра. Теорема о собственных числах вырожденных ядер. Примеры.

Ряды Фурье по системе собственных функций оператора Фредгольма. Теорема Гильберта-Шмидта.

Повторные операторы Фредгольма и повторные ядра. Представление повторных ядер рядами Фурье по системе собственных функций оператора Фредгольма. Положительно определенные ядра. Теорема Мерсера о представлении положительно определенных ядер рядами Фурье по системе собственных функций оператора Фредгольма.

Раздел 5

Интегральные уравнения как некорректно поставленные задачи.

Понятие о некорректно поставленных задачах. Устойчивость решения по Ляпунову. Примеры. Интегральные уравнения Фредгольма первого рода как некорректно поставленные задачи. Методы регуляризации решения. Сглаживающий функционал Тихонова.

Типовые контрольные вопросы для проверки самостоятельной работы

- 1. Привести классификацию линейных интегральных уравнений.
- 2. Привести примеры задач, решения которых сводятся к интегральным уравнениям.
- 3. Дать определение нормированного пространства.
- 4. Дать определение метрического пространства.
- 5. Дать определение скалярного произведения.
- 6. Привести примеры скалярных произведений в различных линейных пространствах и метрик, индуцированных этими произведениями.
- 7. Привести примеры линейных операторов.
- 8. Сформулировать неравенство Коши-Буняковского для скалярных произведений.

- 9. Сформулировать неравенство Коши-Буняковского для интегралов.
- 10.Сформулировать неравенство Коши-Буняковского для конечных и бесконечных сумм.
- 11. Дать определения непрерывного и вполне непрерывного операторов.
- 12. Привести пример непрерывного оператора, не являющегося вполне непрерывным.
- 13. Дать определение симметричного оператора.
- 14.Сформулировать теорему о существовании собственного числа у вполне непрерывного симметричного оператора.
- 15.Описать структуру множества собственных чисел и собственных векторов вполне непрерывного симметричного оператора.
- 16.Описать структуру множества собственных чисел и собственных векторов уравнения Фредгольма второго рода.
- 17. Привести примеры операторов Фредгольма с вырожденными ядрами.
- 18. Привести примеры ортогональных систем функций и соответствующих им рядов Фурье.
- 19. Сформулировать теорему Гильберта-Шмидта.
- 20. Дать определение повторного ядра.
- 21. Сформулировать теорему Мерсера.
- 22. Дать определение положительно определенного ядра.
- 23. Привести примеры корректно и некорректно поставленных задач.
- 24. Описать процедуру регуляризации решения некорректно поставленной задачи по Тихонову.

Вопросы к экзамену

- 1. Понятие интегрального уравнения. Классификация интегральных уравнений. Задачи, приводящие к интегральным уравнениям.
- 2. Скалярное произведение, норма и метрика. Гильбертовы пространства. Свойства и примеры.
- 3. Вполне непрерывные операторы в гильбертовом пространстве. Определения, свойства, примеры. Оператор Фредгольма.
- 4. Теорема о существовании собственной функции у вполне непрерывного симметричного.
- 5. Теорема о существовании последовательности собственных функций вполне непрерывного симметричного оператора.
- 6. Структура множества собственных значений и собственных функций вполне непрерывного симметричного оператора.
- 7. Свойства собственных значений и собственных функций симметричного оператора Фредгольма.

- 8. Теорема о нахождении собственных функций оператора Фредгольма по методу Келлога (построение рекуррентной последовательности функций и ее свойства).
- 9. Теорема о нахождении собственных функций оператора Фредгольма по методу Келлога (доказательство сходимости «четной» и «нечетной» подпоследовательностей рекуррентной последовательности в интегральной норме).
- 10. Теорема о нахождении собственных функций оператора Фредгольма по методу Келлога (доказательство равномерной сходимости «четной» и «нечетной» подпоследовательностей рекуррентной последовательности, завершение доказательства).
- 11. Интегральные уравнения Фредгольма с вырожденными ядрами.
- 12. Теорема Гильберта-Шмидта для вполне непрерывного симметрического оператора.
- 13. Свойства повторных операторов Фредгольма и повторных ядер.
- 14. Теорема Мерсера.
- 15. Понятие о некорректных задачах. Примеры.
- 16. Интегральные уравнения как некорректные задачи.
- 17. Методы регуляризации решений интегральных уравнений.

Методические указания для обучающихся по освоению дисциплины

Организуя свою учебную работу, студенты должны:

Во-первых, выявить рекомендуемый режим и характер учебной работы по изучению теоретического курса, практическому применению изученного материала, по выполнению заданий для самостоятельной работы, по использованию информационных технологий и т.д.

Во-вторых, ознакомиться с указанным в методическом материале по дисциплине перечнем учебно-методических изданий, рекомендуемых студентам для подготовки к занятиям и выполнения самостоятельной работы, а также с методическими материалами на бумажных и/или электронных носителях, выпущенных кафедрой своими силами и предоставляемые студентам во время занятий.

Самостоятельная работа студентов, предусмотренная учебным планом должна соответствовать более глубокому усвоению изучаемого курса, формировать навыки исследовательской работы и ориентировать студентов на умение применять теоретические знания на практике.

1. Работа с учебными пособиями. Для полноценного усвоения курса студент должен, прежде всего, овладеть основными понятиями этой дисциплины. Необходимо усвоить определения и понятия, уметь приводить их точные формулировки, приводить примеры объектов, удовлетворяющих

этому определению. Кроме того, необходимо знать круг фактов, связанных с данным понятием. Требуется также знать связи между понятиями, уметь устанавливать соотношения между классами объектов, описываемых различными понятиями.

- 2. Самостоятельное изучение тем. Самостоятельная работа студента является важным видом деятельности, позволяющим хорошо усвоить изучаемый предмет и одним из условий достижения необходимого качества подготовки и профессиональной переподготовки специалистов. Она предполагает самостоятельное изучение студентом рекомендованной учебно-методической литературы, различных справочных материалов, написание рефератов, выступление с докладом, подготовку к лекционным и практическим занятиям, подготовку к зачёту и экзамену.
- **3.** Подготовка к практическим занятиям. При подготовке к практическим занятиям студентам рекомендуется следовать методическим рекомендациям по работе с учебными пособиями, приведенным выше.
- **4.** Составление глоссария. В глоссарий должны быть включены основные понятия, которые студенты изучают в ходе самостоятельной работы. Для полноты исследования рекомендуется вписывать в глоссарий и те термины, которые студентам будут раскрыты в ходе лекционных занятий.
- **5.** Составление конспектов. В конспекте отражены основные понятия темы. Для наглядности и удобства запоминания использованы схемы и таблицы.
- **6. Подготовка к экзамену.** При подготовке к экзамену студенты должны использовать как самостоятельно подготовленные конспекты, так и материалы, полученные в ходе занятий.

Качество усвоения студентом каждой дисциплины оценивается по 100-балльной шкале.

Интегральная рейтинговая опенка (балл) по каждому модулю (периоду обучения) складывается из оценки текущей работы обучающихся на занятиях семинарского типа (семинары, практические занятия, практикумы, лабораторные работы, коллоквиумы и иные аналогичные занятия), оценки индивидуальной работы обучающихся и оценки за выполнение заданий рейтингового контроля успеваемости. При этом доля баллов, выделенных на рейтинговый контроль не должна превышать 50% общей суммы баллов данного модуля (периода обучения).

Максимальная сумма рейтинговых баллов по учебной дисциплине, заканчивающейся экзаменом, по итогам семестра составляет 60.

Обучающемуся, набравшему 40-54 балла, при подведении итогов семестра (на последнем занятии по дисциплине) в рейтинговой ведомости учета успеваемости и зачетной книжке может быть выставлена оценка «удовлетворительно».

Обучающемуся, набравшему 55-57 баллов, при подведении итогов

семестра (на последнем занятии по дисциплине) в графе рейтинговой ведомости учета успеваемости «Премиальные баллы» может быть добавлено 15 баллов и выставлена экзаменационная оценка «хорошо».

Обучающемуся, набравшему 58-60 баллов, при подведении итогов семестра (на последнем занятии по дисциплине) в графе рейтинговой ведомости учета успеваемости «Премиальные баллы» может быть добавлено 27 баллов и выставлена экзаменационная оценка «отлично».

В каких-либо иных случаях добавление премиальных баллов не допускается.

Обучающийся, набравший до 39 баллов включительно, сдает экзамен. При наличии подтвержденных документально уважительных причин, по которым были пропущены занятия (длительная болезнь, обучение в другом вузе в рамках академической мобильности и др.), обучающийся имеет право отработать пропущенные занятия и получить дополнительные баллы в рамках установленных баллов за модуль. Сроки и порядок отработки определяет преподаватель. Баллы выставляются в графе «отработка».

Ответ обучающегося на экзамене оценивается суммой до 40 рейтинговых баллов. Итоговая оценка складывается из суммы баллов, полученных за семестр, и баллов, полученных на экзамене. Обучающемуся, который сдает экзамен, премиальные баллы не начисляются.

Согласно подходам балльно-рейтинговой системы в рамках оценки знаний, умений, владений (умений применять) и (или) опыта деятельности дисциплины установлены следующие аспекты:

- Содержание учебной дисциплины в рамках одного семестра делится на два модуля (периода обучения). По окончании модуля (периода обучения) осуществляется рейтинговый контроль успеваемости знаний студентов.
 - Сроки проведения рейтингового контроля:

осенний семестр — I рейтинговый контроль успеваемости проводится согласно графику учебного процесса, II рейтинговый контроль успеваемости - две последние недели фактического завершения семестра по графику учебного процесса;

весенний семестр — I рейтинговый контроль успеваемости проводится согласно графику учебного процесса, II рейтинговый контроль успеваемости - две последние недели фактического завершения семестра по графику учебного процесса.

VII. Материально-техническое обеспечение дисциплины

Наименование специальных* помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения. Реквизиты подтверждающего документа
Учебная аудитория для	Комплект учебной	Google Chrome – бесплатно
проведения занятий	мебели,	Kaspersky Endpoint Security 10 для

лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, учебная аудитория: № 312 (170002 Тверская обл., г. Тверь,	интерактивная система .	Windows – Акт на передачу прав ПК545 от 16.12.2022 Lazarus – бесплатно ОрепОffice – бесплатно Многофункциональный редактор ONLYOFFICE бесплатное ПО – бесплатно ОС Linux Ubuntu бесплатное ПО – бесплатно
пер. Садовый, д. 35) Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, учебная аудитория: № 207 (170002 Тверская обл., г. Тверь, пер. Садовый, д. 35)	Комплект учебной мебели, интерактивная система со встроенным проектором.	Google Chrome – бесплатно Kaspersky Endpoint Security 10 для Windows – Акт на передачу прав ПК545 от 16.12.2022 Lazarus – бесплатно OpenOffice – бесплатно Многофункциональный редактор ONLYOFFICE бесплатное ПО – бесплатно ОС Linux Ubuntu бесплатное ПО – бесплатно

VIII. Сведения об обновлении рабочей программы дисциплины

№ п.п.	Обновленный раздел рабочей программы дисциплины	Описание внесенных изменений	Дата и № протокола заседания кафедры / методического совета факультета, утвердившего изменения
1.	V. Учебно- методическое и информационное обеспечение дисциплины	1) Рекомендуемая литература – актуализация списка	Решение научно- методического совета математического факультета (протокол №1 от 20.09.2022 г.)
2.	V. Учебно- методическое и информационное обеспечение дисциплины	1) Рекомендуемая литература – актуализация списка	Решение научно- методического совета математического факультета (протокол №1 от 19.09.2023 г.)