Документ подписан простой электронной подписью

Информация о владельце:

Фио: Смирнов Сергей Министерство науки и высшего образования Российской Федерации

Должность: врио ректора

Дата подписания: 23.09.2022 12:11 БОУ ВО «Тверской государственный университет»

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель ООП

июня

Б.Б.Педько

2022 г.

Рабочая программа дисциплины (с аннотацией)

Физика реального кристалла

Направление подготовки 03.03.02 Физика

профиль

Физика конденсированного состояния вещества

Для студентов 4 курса, очной формы обучения

Составитель: к.ф.-м.н., доцент Ляхова М.Б.

I. Аннотация

1. Наименование дисциплины в соответствии с учебным планом

Физика реального кристалла

2. Цель и задачи дисциплины

Целью освоения дисциплины изучение основных вопросов физики реального кристалла. Обсуждаются понятия идеального и реального кристалла. Подробно изучаются все типы дефектов кристаллической структуры реальных кристаллов (точечные, линейные, поверхностные и объемные), их строение и характеристики (упругие поля, энергия), механизмы движения и взаимодействия, влияние на физические свойства (механические, электрические, магнитные и другие) и процессы, происходящие в кристаллах (диффузия, самодиффузия, упорядочение твердых растворов, пластическая и упругая деформации). Студентами практически осваиваются различные экспериментальные методы исследования структуры кристаллов.

Задачами освоения дисциплины являются формирование и развитие у обучающихся компетенций: способность использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач (ОПК-3); способность критически переосмысливать накопленный опыт, изменять при необходимости направление своей деятельности (ОПК-8).

3. Место дисциплины в структуре ООП

Дисциплина «Физика реального кристалла» (Б1.В.01.05) входит в вариативную часть учебного плана ООП. Изучается на четвертом курсе в 7 семестре. Содержательно дисциплина связана с дисциплинами «Введение в физику конденсированных сред», «Физика конденсированного состояния вещества», «Дифракционный структурный анализ». Для успешного освоения дисциплины необходимы знания дисциплин общей и теоретической физики.

Дисциплина является основой общего физического практикума, производственной и преддипломной практик.

4. Объем дисциплины: 3 зачетных единицы, 108 академических часов, **в том числе контактная работа**: лекции 32 часа, лабораторные работы 32 часа; **самостоятельная работа**: 44 часа.

В учебном плане 2014 г.н. объем дисциплины: 3 зачетных единицы, 108 академических часов, в том числе контактная работа: лекции 28 часов, лабораторные работы 28 часов; самостоятельная работа: 52 часа.

5. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемые результаты освоения образовательной программы (формируемые компетенции)	Планируемые результаты обучения по дисциплине
ОПК-3 способность использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач	Владеть: экспериментальными методами исследования структуры реальных кристаллов. Уметь: ясно излагать современные представления физики реальных кристаллов. Знать: классификацию дефектов реальных кристаллов, их роль в процессах, происходящих в реальных кристаллах, под действием внешних и внутренних факторов.
ОПК-8 способность критически переосмысливать накопленный опыт, изменять при необходимости направление своей деятельности	Владеть: практическими методиками исследования физических свойств и структуры реальных кристаллов. Уметь: применять основы физики реальных кристаллов в физических экспериментах. Знать: место физики реальных кристаллов в естественнонаучной картине мира.
ПК-2 способность проводить научные исследования в избранной области экспериментальных и (или) теоре-	Владеть: навыком проведения экспериментальных и теоретических научных исследований в области физики конденсированного состояния вещества. Уметь: использовать современную приборную базу

тических физических исследований с помощью современной приборной базы (в том числе сложного физического оборудования) и информационных технологий с учетом отечественного и зарубежного опыта

Знать: современные информационные технологии для обработки и анализа данных с учетом отечественного и зарубежного опыта.

- 6. Форма промежуточной аттестации зачет (7 семестр).
- 7. Язык преподавания русский.

II. Содержание дисциплины, структурированное по темам с указанием отведенного на них количества академических часов и видов учебных занятий

	ıc.)	раб	ктная ота ис.)	льная ас.)
Учебная программа – наименование разделов и тем	Всего (час.)	Лекции	Лабораторные работы	Самостоятельная работа (час.)
Лекции			. –	
Введение. Физика реального кристалла и ее цели.				
Идеальные и реальные кристаллы.				
Монокристаллы и поликристаллы.	2	2		
Кристаллическая структура. Дефекты	2	2		
кристаллического строения. Классификация				
дефектов реальных кристаллов.				
Точечные дефекты. Виды точечных дефектов.				
Термодинамика точечных дефектов. Миграция		4		
точечных дефектов. Источники и стоки точечных				2
дефектов. Комплексы точечных дефектов.	6			
Поведение вакансий при закалке и отжиге.				
Методы определения концентраций вакансий,				
энергии их образования и миграции.				
Основные типы дислокаций и их движение.				
Краевая дислокация. Скольжение краевой				
дислокации. Переползание краевой дислокации.				
Винтовая дислокация. Скольжение винтовой				
дислокации. Смешанные дислокации и их	8	4		4
движение. Призматические дислокации. Контур и	O	_		7
вектор Бюргерса. Плотность дислокаций. Методы				
выявления дислокаций в металлах: метод ямок				
травления, дифракционная просвечивающая				
электронная микроскопия.				
Упругие свойства дислокаций. Энергия	8	4		4
дислокаций. Силы, действующие на дислокацию.	U	-т		-r

Упругое взаимодействие параллельных краевых			
дислокаций. Упругое взаимодействие			
параллельных винтовых дислокаций.			
Дислокации в типичных металлических			
структурах. Подразделение дислокация на			
полные и частичные. Энергетический критерий			
дислокационных реакций. Дефекты упаковки.			
Характерные полные единичные дислокации.			
Полные дислокации в ГПУ, ГЦК и ОЦК			
решетках. Частичные дислокации Шокли.			
Растянутые дислокации. Ширина растянутых			
дислокаций. Частичные дислокации Франка.			
Стандартные тетраэдр и дислокационные	12	6	6
реакции в ГЦК решетке. Стандартный тетраэдр			
Томпсона. Вершинные дислокации и дислокации			
Ломер-Коттрелла. Тетраэдр дефектов упаковки.			
Стандартная бипирамида и дислокационные			
реакции в ГПУ решетке. Дислокационные			
реакции в ОЦК решетке. Поперечное скольжение			
и переползание растянутых дислокаций.			
Двойникующая дислокация. Дислокации в			
упорядоченных сплавах.			
Пересечение дислокаций. Пересечение			
единичных дислокаций. Пересечение краевых			
дислокаций. Пересечение краевой и винтовой	6	2	4
дислокаций. Движение дислокаций с порогами.			
Пересечение растянутых дислокаций.			
Взаимодействие дислокаций с точечными			
дефектами. Взаимодействие дислокаций с			
точечными дефектами. Взаимодействие			
дислокаций с примесными атомами. Атмосферы	6	2	4
Коттрелла, Снука и Сузуки.			
Взаимодействие дислокаций с вакансиями и			
межузельными атомами.			
Образование дислокаций. Происхождение			
дислокаций. Размножение дислокаций при	4	2	2
пластической деформации. Источники Франка –	+	<i>_</i>	<i>_</i>
Рида и Бардина – Херринга.			

Дисклинации. Дисклинации в непрерывной			
упругой среде. Дисклинации в кристаллической	4	2	2
решетке.	4	2	2
Границы зерен и субзерен. Малоугловые			
границы. Высокоугловые границы. Специальные			
и произвольные границы. Зернограничные	4	2	2
дислокации.			
Торможение дислокаций. Сила Пайерлса.			
Торможение дислокаций при их взаимодействии			
с другими дислокациями и границами зерен.			
Торможение дислокаций дисперсными			
частицами. Выгибание дислокаций между			
дисперсными частицами. Локальное поперечное			
скольжение. Перерезание дислокациями	4	2	2
1			
дисперсных частиц. Торможение дислокаций			
атомами примесей и легирующих элементов.			
Торможение дислокаций атмосферами Коттрелла,			
Сузуки и Снука. Торможение дислокаций в			
твердых растворах.			
Торможение дислокаций. Сила Пайерлса.			
Торможение дислокаций при их взаимодействии			
с другими дислокациями и границами зерен.			
Торможение дислокаций дисперсными			
частицами. Выгибание дислокаций между			
дисперсными частицами. Локальное поперечное	2	2	
скольжение. Перерезание дислокациями	_	2	
дисперсных частиц. Торможение дислокаций			
атомами примесей и легирующих элементов.			
Торможение дислокаций атмосферами Коттрелла,			
Сузуки и Снука. Торможение дислокаций в			
твердых растворах.			
Торможение дислокаций. Сила Пайерлса.			
Торможение дислокаций при их взаимодействии			
с другими дислокациями и границами зерен.			
Торможение дислокаций дисперсными	6	4	2
частицами. Выгибание дислокаций между	U	4	
дисперсными частицами. Локальное поперечное			
скольжение. Перерезание дислокациями			
дисперсных частиц. Торможение дислокаций			

атомами примесей и легирующих элементов.				
Торможение дислокаций атмосферами Коттрелла,				
Сузуки и Снука. Торможение дислокаций в				
твердых растворах.				
Лабораторные работы			•	
Работа №1. Изучение методики приготовления				
шлифов и выявления их микроструктуры для	14		12	2
металлографического анализа.				
Работа №2. Определение геометрических				
параметров порошковых материалов методами	6		4	2
стереометрической металлографии.				
Работа №3. Построение кривой распределения				
по размерам шаровидных частиц карбонильного	6		4	2
железа.				
Работа №4. Определение параметров однофазной			_	
полиэдрической структуры.	6		4	2
Работа №5. Определение удельной поверхности				
раздела и количественного соотношения фаз в	6		4	2
гетерогенных сплавах.				
Работа №6. Определение плотности дислокаций				
и качественная оценка характера их	6		4	2
распределения в монокристалле кремния.	-			
ИТОГО	108	32	32	44

Ш. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

- методические рекомендации по выполнению лабораторных работ;
- вопросы и задания для подготовки к модулям рейтингового контроля.

IV. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Форма проведения промежуточного контроля: студенты, освоившие программу курса «Физика реального кристалла» могут получить зачет по итогам семестровой и полусеместровой рейтинговой аттестации согласно

«Положения о рейтинговой системе обучения и оценки качества учебной работы студентов ТвГУ» (протокол №4 от 25 октября 2017 г.). Максимальная сумма баллов, которые можно получить за семестр 100.

Если условия «Положения о рейтинговой системе …» не выполнены, то зачет сдается согласно «Положения о промежуточной аттестации (экзаменах и зачетах) студентов ТвГУ» (протокол №4 от 25 октября 2017 г.).

1. Типовые контрольные задания для проверки уровня сформированности компетенции ОПК-3 — способность использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач

Этап формирования компетенции, в котором участвует дисциплина	Типовые контрольные задания для оценки знаний, умений, навыков	Показатели и критерии оценивания компетенции, шкала оценивания
Начальный владеть	Расшифруйте термины: 1. «монокристалл», 2. «поликристалл».	Правильный ответ — 2 балла Неполный ответ — 1 балл
Начальный уметь	Перечислите дефекты реальных кристаллов: 1. точечные, 2. линейные, 3. поверхностные.	Полный ответ — 2 балла Неполный ответ — 1 балл
Начальный знать	1. Что такое «гантель»? 2. Что такое «краудион»?	Правильный ответ – 2 балла Неполный ответ – 1 балл
Промежуточный владеть	 Поясните с энергетических позиций, почему равновесные кристаллы содержат точечные дефекты. Как зависит от температуры равновесная концентрация вакансий? 	Правильный ответ — 2 балла Неполный ответ — 1 балл

	Опишите по какому механизму	Правильный
Промежуточный	мигрируют:	ответ – 2 балла
уметь	1. межузельные атомы,	Неполный ответ
	2. примесные атомы.	– 1 балл
	Опишите строение:	Правильный
Промежуточный знать	1. краевой дислокации,	ответ – 2 балла
		Неполный ответ
	2. винтовой дислокации.	– 1 балл

2. Типовые контрольные задания для проверки уровня сформированности компетенции ОПК-8 — способность критически переосмысливать накопленный опыт, изменять при необходимости направление своей деятельности

Этап формирования компетенции, в котором участвует дисциплина	Типовые контрольные задания для оценки знаний, умений, навыков	Показатели и критерии оценивания компетенции, шкала оценивания
Начальный владеть	Приведите пример физических характеристик реальных кристаллов: 1. структурночувствительных, 2. неструктурночувствительных.	Правильный ответ — 2 балла Неполный ответ — 1 балл
Начальный уметь	Опишите поведение при закалке и отжиге: 1. вакансий, 2. межузельных атомов.	Правильный ответ – 2 балла Неполный ответ – 1 балл
Начальный знать	Дайте определение понятиям: 1. точечный дефект, 2. линейный дефект, 3. поверхностный дефект.	Правильный ответ – 2 балла Неполный ответ – 1 балл
Заключительный владеть	Опишите влияние дефектов на физические свойства реальных кристаллов.	Полный ответ — 2 балла Неполный ответ — 1 балл
Заключительный уметь	Дайте полную классификацию дефектов кристаллов и их	Полный ответ – 2 балла

	комплексов.	Неполный ответ
		– 1 балл
Заключительный	Опишите экспериментальные	Полный ответ – 2 балла
знать	методы выявления дефектов реальных кристаллов.	Неполный ответ – 1 балл

3. Типовые контрольные задания для проверки уровня сформированности компетенции ПК-2 — способность проводить научные исследования в избранной области экспериментальных и (или) теоретических физических исследований с помощью современной приборной базы (в том числе сложного физического оборудования) и информационных технологий с учетом отечественного и зарубежного опыта

Этап формирования компетенции, в котором участвует дисциплина	Типовые контрольные задания для оценки знаний, умений, навыков	Показатели и критерии оценивания компетенции, шкала оценивания
Начальный владеть	Приведите примеры экспериментальных методов исследования дислокационной структуры реальных кристаллов.	Правильный ответ – 2 балла Неполный ответ – 1 балл
Начальный уметь	Выберите из предложенных изображений дислокационных ямок травления, полученные методами: 1. оптической микроскопии, 2. электронной микроскопии, 3. атомно-силовой микроскопии.	Правильный ответ — 2 балла Неполный ответ — 1 балл
Начальный з нать	Перечислите экспериментальные методы исследования структурночувствительных характеристик реальных кристаллов.	Правильный ответ — 2 балла Неполный ответ — 1 балл
Промежуточный владеть	Дайте общую характеристику методов исследования	Полный ответ – 2 балла

	дефектности реальных	Неполный ответ
	кристаллов.	– 1 балл
	Выберите из предложенных	
	метод выявления	
	дислокационной структуры	Полный ответ –
Промежуточный	кристаллов:	2 балла
уметь	1. химическое травление,	Неполный ответ
	2. ионное полировка,	– 1 балл
	3. электрохимическое	
	травление.	
	Перечислите	Полный ответ –
Промежуточный	экспериментальные методы	2 балла
знать	исследования структуры	Неполный ответ
	реальных кристаллов.	– 1 балл

V. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

а) Основная литература:

- 1. Каплунов И. А. Физическое материаловедение. Фазовые равновесия [Электронный ресурс]: учебное пособие. Тверь: Тверской государственный университет, 2011. 1 электрон. опт. диск (CD-ROM). Режим доступа: http://texts.lib.tversu.ru/texts/fizicheskoe_materialovedenie_fazovye_ravnovesi-ya_2011/e-book/index.html
- Федотов А.К. Физическое материаловедение. Часть 3. Материалы энергетики и энергосбережения [Электронный ресурс]: учебное пособие.
 Минск: Вышэйшая школа, 2015. 464 с. Книга находится в базовой версии ЭБС IPRbooks. Режим доступа: http://www.iprbookshop.ru/48022.html
- 3. Франк-Каменецкая, О.В. Кристаллофизика: учебное пособие [Электронный ресурс]: учеб. пособие Электрон. дан. Санкт-Петербург: СПбГУ, 2016. 84 с. Режим доступа: https://e.lanbook.com/book/94671

б) Дополнительная литература:

- 1. Басалаев, Ю.М. Кристаллофизика и кристаллохимия [Электронный ресурс] : учеб. пособие Электрон. дан. Кемерово : КемГУ, 2014. 403 с. Режим доступа: https://e.lanbook.com/book/61407.
- 2. Дегтяренко, Н.Н. Свойства дефектов и их ансамблей, радиационная физика твердого тела: учебное пособие для вузов [Электронный ресурс]: учеб. пособие Электрон. дан. Москва: НИЯУ МИФИ, 2011. 200 с. Режим доступа: https://e.lanbook.com/book/75892.
- 3. Розин, К.М. Кристаллофизика. Учебное пособие [Электронный ресурс] : учеб. пособие / К.М. Розин, В.С. Петраков. Электрон. дан. Москва : МИСИС, 2006. 249 с. Режим доступа: https://e.lanbook.com/book/51712 .
- 4. Сонин, А.С. Курс макроскопической кристаллофизики [Электронный ресурс] : учеб. пособие Электрон. дан. Москва : Физматлит, 2006. 256 с. Режим доступа: https://e.lanbook.com/book/59408.
- 5. Багдасаров, Х.С. Высокотемпературная кристаллизация из расплава [Электронный ресурс] Электрон. дан. Москва : Физматлит, 2004. 147 с. Режим доступа: https://e.lanbook.com/book/48231.
- 6. Физика реального кристалла. Лабораторный практикум [Электронный ресурс] : учеб. пособие / И.С. Диденко [и др.]. Электрон. дан. Москва : МИСИС, 2013. 76 с. Режим доступа: https://e.lanbook.com/book/51699.

VI. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Электронные библиотечные системы:

- 1. ЭБС «ИНФРА-М» http://www.znanium.com
- 2. ЭБС «Университетская библиотека ОН-ЛАЙН» http://www.biblioclub.ru
- 3. ЭБС «ЛАНЬ» http://e.lanbook.com

VII. Методические указания для обучающихся по освоению дисциплины Вопросы для подготовки к письменным опросам рейтингового контроля.

Модуль №1. Введение. Точечные дефекты

- 1. Расшифруйте термин «монокристалл».
- 2. Расшифруйте термин «поликристалл».
- 3. Расшифруйте термин «идеальный кристалл».
- 4. Расшифруйте термин «реальный кристалл».
- 5. Перечислите точечные дефекты реальных кристаллов.
- 6. Перечислите линейные дефекты реальных кристаллов.
- 7. Перечислите поверхностные дефекты реальных кристаллов.
- 8. Какие упаковки частиц относятся к плотнейшим и каков их коэффициент компактности?
- 9. Что такое «гантель»?
- 10. Что такое «краудион»?
- 11. Поясните с энергетических позиций, почему равновесные кристаллы содержат точечные дефекты.
- 12. Как зависит от температуры равновесная концентрация вакансий?
- 13. Что такое энергия активации миграции вакансии?
- 14. Опишите вакансионные комплексы. Какова их подвижность по сравнению с моновакансиями?
- 15. Перечислите источники и стоки вакансий.
- 16. Назовите основные причины появления неравновесной концентрации вакансий и межузельных атомов.
- 17. Опишите по какому механизму мигрируют межузельные атомы?
- 18. Опишите по какому механизму мигрируют примесные атомы?
- 19. Сравните равновесные концентрации и подвижность моновакансий, дивакансий и межузельных атомов.
- 20. Опишите поведение вакансий при закалке и отжиге.

Модуль №2. Линейные и поверхностные дефекты

- 3. Дайте общее определение дислокации.
- 4. Опишите строение краевой дислокации.
- 5. Опишите строение винтовой дислокации.
- 6. Какая дислокация называется смешанной?
- 7. Опишите процесс скольжения краевой дислокации.
- 8. Опишите процесс переползания краевой дислокации.
- 9. Опишите процесс скольжения винтовой дислокации.
- 10. Опишите строение призматической дислокации.
- 11. Как строятся контур и вектор Бюргерса?
- 12. Опишите упругое взаимодействие параллельных краевых дислокаций.
- 13. Опишите упругое взаимодействие параллельных винтовых дислокаций.
- 14. Сформулируйте энергетический критерий дислокационных реакций.
- 15. По каким признакам дислокации подразделяются на полные и частичные?
- 16. Что такое дефект упаковки?
- 17. Опишите строение растянутых дислокаций.
- 18. Опишите строение частичной дислокации Франка.
- 19. Что такое атмосферы Коттрелла, Снука и Сузуки?
- 20. Кратко опишите источник Франка Рида.
- 21. Что такое дисклинации?
- 22. Опишите строение малоугловых и высокоугловых границ зерен.

Вопросы для подготовки к зачету:

- 1. Виды точечных дефектов. Термодинамика точечных дефектов.
- 2. Миграция точечных дефектов. Источники и стоки точечных дефектов.
- 3. Комплексы точечных дефектов. Поведение вакансий при закалке и отжиге.
- 4. Краевая дислокация. Скольжение краевой дислокации. Переползание краевой дислокации.
- 5. Винтовая дислокация. Скольжение винтовой дислокации.

- 6. Смешанные дислокации и их движение.
- 7. Призматические дислокации.
- 8. Контур и вектор Бюргерса.
- 9. Упругие свойства дислокаций. Энергия дислокаций. Взаимодействие параллельных краевых и винтовых дислокаций.
- 10. Подразделение дислокация на полные и частичные. Энергетический критерий дислокационных реакций.
- 11. Дефекты упаковки.
- 12. Характерные полные единичные дислокации в ГПУ, ГЦК и ОЦК решетках.
- 13. Частичные дислокации Шокли. Растянутые дислокации. Ширина растянутых дислокаций.
- 14. Частичные дислокации Франка.
- 15. Стандартный тетраэдр Томпсона. Вершинные дислокации и дислокации Ломер–Коттрелла.
- 16. Стандартная бипирамида и дислокационные реакции в ГПУ решетке.
- Поперечное скольжение и переползание растянутых дислокаций.
 Двойникующая дислокация.
- 18. Пересечение единичных дислокаций. Пересечение краевых дислокаций. Пересечение краевой и винтовой дислокаций.
- 19. Движение дислокаций с порогами. Пересечение растянутых дислокаций.
- 20. Взаимодействие дислокаций с точечными дефектами. Атмосферы Коттрелла, Снука и Сузуки.
- 21. Происхождение дислокаций. Размножение дислокаций при пластической деформации. Источник Франка Рида.
- 22. Дисклинации в непрерывной упругой среде и в кристаллической решетке.
- 23. Границы зерен и субзерен. Малоугловые и высокоугловые границы. Специальные и произвольные границы. Зернограничные дислокации.
- 24. Торможение дислокаций. Сила Пайерлса.

Требования к рейтинг-контролю

В семестре проводится два контрольных модуля.

I модуль — 30 баллов

Письменный опрос по теории (10 вопросов) – 30 баллов

по 3 балла – за правильный ответ на каждый вопрос

по 1–2 балла – за неполный ответ

II модуль — 70 баллов

Посещение лекций – 20 баллов

по 1 баллу за лекцию

4 премиальных балла при посещении всех лекций

Лабораторные работы (6 работ) – 30 баллов

по 2 балла – за выполнение каждой работы

по 1 баллу – за оформление отчета по работе

по 2 балла – за правильные ответы на контрольные вопросы

по 1 баллу – за неполные ответы

Письменный опрос по теории (10 вопросов) – 20 баллов

по 2 балла – за правильный ответ на каждый вопрос

по 1 баллу – за неполный ответ

VIII. Перечень информационных педагогических И технологий, образовательного используемых осуществлении процесса при ПО дисциплине, перечень программного обеспечения включая информационных справочных систем (по необходимости)

Преподавание учебной дисциплины «Физика реального кристалла» строится на сочетании лекций, лабораторных занятий и самостоятельной работы студентов.

IX. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Наименование специальных* помещений	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения. Реквизиты подтверждающего документа
Кафедра общей физики. Лаборатория методики преподавания физики. Кабинет качества преподавания физики. №219 (170002 Тверская обл., г. Тверь, Садовый пер., д. 35)	1 Внешний жесткий диск Transcend 1 Gb 2 Компьютер Кгаftway Credo KC36Vista Business/E7400/2*10024Mb DDR800/T160G/DVDRW/500W/CARE3/Moнитор 20" LG W2043S-PFpf 3 Камера Web Logitech – 3 шт. 4 Коммутатор Linksys SD2008T-EU CISCO SB 8- портовый – 3 шт. 5 Сумка Continent 6 Принтер лазерный HP LJ 1100 C4224A 7 МФУ XEROX PH 3100 8 Сканер UMAX Astra 3450 600*1200dpi, 42bit встроенный слайд-проектор 9 Ноутбук Dell Ispiron 1300 (1.7 GHz) 15.4WXGA. 512MB. 80GB 10 Принтер лазерный CANON LBP-2900 A4.600*600 11 Ксерокс 1215 12 Мультимедийный проектор BenQ MP 624 13 АРМС для исследования и демонстрации опытов по дифракции с ПЭВМ (монитор Samsung TFT 22) 14 Интерактивная доска Smart Board 660 15 Компьютер iRU Corp 510 – 6 шт. 16 Стеллаж – 10 шт. 17 Комплект компьютерных датчиков 18 Универсальный измерительный прибор ADM2 19 Демонстрационный набор по электричеству и магнетизму. Часть 1 20 Демонстрационный набор по оптике 22 Демонстрационный набор по оптике 22 Демонстрационный набор по механике 23 Доска для проведения демонстрационных	Google Chrome — бесплатно Каspersky Endpoint Security 10 для Windows — Акт на передачу прав №2129 от 25 октября 2016 г. MS Office 365 pro plus — Акт приема- передачи № 369 от 21 июля 2017 Місгозоft Windows 10 Enterprise — Акт приема-передачи № 369 от 21 июля 2017

		Ī
	работ – 2 шт.	
	24 Интерактивный комплект Oculus Development	
	Kit 2	
	25 Источник питания постоянного тока и	
	напряжения большой мощности	
	26 Комплект Monster Kit v 1.0	
	27 ИБП	
Учебно-	1. Печь TZF15/610 трубчатая трехзонная в	Google Chrome -
научная	комплекте с турбомолекулярным стендом	бесплатно
лаборатория	CDK180+M3T	Kaspersky Endpoint
оптической	2. Монитор LG-TFT20 W2043 SE-PF	Security 10 для
микроскопии	3. Проектор BenQ MP777	Windows – Акт на
№ 38 (170002	4. Фотомикроскоп-30	передачу прав
Тверская обл.,	5. Пост. вакуумный	№2129 от 25
г. Тверь,	6. Пост. вакуумн. ВУП-4	октября 2016 г.
Садовый пер.,	1. Весы лабораторные ВЛ-120 с гирей	MS Office 365 pro
д. 35)	калибровочной 100гЕ2	plus - Акт приема-
	2. Весы лабораторные ВЛТЭ-500г с гирей	передачи № 369 от
	калибровочной 500г F2	21 июля 2017
	3. Коммутатор SMC - EZ 109 DT	Microsoft Windows
	4. Компьютер Core 6550 Box/Asus	10 Enterprise - Акт
	P5KSE/2*1024DDRII/160/7200/DVDRW/Монитор	приема-передачи №
	Samsung 940N	369 от 21 июля
	5. Монитор 17" Samsung SuncMaster 173Р	2017
	6. Монитор 17" Samsung SuncMaster 173Р	2017
	7. Системный блок P IV 1.8G Box/Asus	
	P4B533/256Dimm DDR 2100/20Gb	
	/7200/10/100/UHDC/FDD	
	8. Системный блок P IV 1.8G Box/Asus	
	P4B533/256Dimm DDR 2100/20Gb	
	/7200/10/100/UHDC/FDD	
	9. Источник бесперебойного питания Васк АРС	
	500 MI	
	10. Источник бесперебойного питания Smart	
	UPS 700 VA + Network	
	11. ИБП APC RS500	
	12. Компьютер Core 6550 Box/Asus	
	P5KSE/2*1024DDRII/160/7200/DVDRW/Монитор	
	Samsung 940N	
	13. Системный блок P IV 1.8G Box/Asus	
	P4B533/256Dimm DDR 2100/20Gb	
	/7200/10/100/UHDC/FDD	
	14. Видеокамера цифровая	
	15. Мультиметр APPA109N	
	16. Видеокамера цифровая	

- 17. МФУ Epson Stylus Photo L210
- 18. Источник бесперебойного питания

Помещения для самостоятельной работы:

Наименование	Оснащенность помещений для	Перечень лицензионного
помещений	самостоятельной работы	программного обеспечения.
		Реквизиты
		подтверждающего документа
Помещение для	1. Компьютер RAMEC STORM	Adobe Acrobat Reader DC -
самостоятельной	C2D 4600/160Gb/ 256mB/DVD-	бесплатно
работы, учебная	RW +Mонитор LG TFT 17"	Cadence SPB/OrCAD 16.6 -
аудитория для	L1753S-SF – 12 шт	Государственный контракт на
проведения занятий	2. Мультимедийный комплект	поставку лицензионных
лекционного типа,	учебного класса (вариант № 2)	программных продуктов 103 -
занятий	Проектор Casio XJ-M140,	ГК/09 от 15.06.2009
семинарского типа,	настенный проекц. экран Lumien	Google Chrome - бесплатно
курсового	180*180. ноутбук Dell N4050.	Java SE Development Kit 8 Update
проектирования	сумка 15,6", мышь	45 (64-bit) - бесплатно
(выполнения	3. Коммутатор D-Link	Kaspersky Endpoint Security 10 для
курсовых работ),	10/100/1000mbps 16-potr DGS-	Windows – Акт на передачу прав
групповых и	1016D	№2129 от 25 октября 2016 г.
индивидуальных	4. Видеокамера IP-FALCON EYE	Lazarus 1.4.0 - бесплатно
консультаций,	FE-IPC-BL200P, ОнЛайн Трейд	Lego MINDSTORM EV3 -
текущего контроля	000	бесплатно
и промежуточной	5. Видеокамера IP-FALCON EYE	Mathcad 15 M010 - AKT
аттестации,	FE-IPC-BL200P, ОнЛайн Трейд	предоставления прав ИС00000027
практики,	000	от 16.09.2011
Компьютерный	6. Демонстрационное	MATLAB R2012b - Акт
класс физико-	оборудование комплект	предоставления прав № Us000311
технического	«LegoMidstormsEV3»	от 25.09.2012
факультета.	7. Комплект учебной мебели	Microsoft Express Studio 4 -
Компьютерная		бесплатно
лаборатория		МіКТеХ 2.9 - бесплатно
робототехнических		MPICH 64-bit – бесплатно
систем №4а		MSXML 4.0 SP2 Parser and SDK -
(170002 Тверская		бесплатно
обл., г. Тверь,		Microsoft Windows 10 Enterprise -
Садовый пер., д. 35)		Акт приема-передачи № 369 от 21
		июля 2017
		MS Office 365 pro plus - Akt
		приема-передачи № 369 от 21
		июля 2017

Х. Сведения об обновлении рабочей программы дисциплины

№п.п.	Обновленный раздел рабочей программы дисциплины	Описание внесенных изменений	Дата и протокол заседания кафедры, утвердившего изменения
1.	Раздел IV	Реквизиты «Положения о рейтинговой системе обучения и оценки качества учебной работы студентов ТвГУ» и «Положения о промежуточной аттестации (экзаменах и зачетах) студентов ТвГУ»	Протокол Совета ФТФ №5 от 31 октября 2017 г.
2.	Раздел IX	Оснащенность аудиторного фонда для проведения учебных занятий и самостоятельной работы студентов согласно «Справки МТО ООП»	Протокол Совета ФТФ №5 от 31 октября 2017 г