Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Смирнов Сергей Министерство науки и высшего образования Российской Федерации

Должность: врио ректора

Дата подписания: 23.09.2022 15:31 ФГБОУ ВО «Тверской государственный университет»

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель ООП

О.Н. Медведева

«28»

КНОНИ

2022 г.

Рабочая программа дисциплины (с аннотацией)

Электричество и магнетизм

Направление подготовки 27.03.05 Инноватика

профиль

Управление инновациями (по отраслям и сферам экономики)

Для студентов 2 курса, очной формы обучения

Составитель: д.х.н., профессор Орлов Ю.Д.

І. Аннотация

1. Цель и задачи дисциплины

Целью освоения дисциплины является: создание фундаментальной базы знаний, на основе которой в дальнейшем можно развивать более углубленное и детализированное изучение всех разделов физики и специализированных курсов.

Задачами освоения дисциплины являются:

- изучение основных физических явлений и процессов, происходящих в электрических магнитных полях;
- установление связи между различными физическими явлениями, вывод основных законов в виде математических уравнений;
- постановка и анализ задачи, применение различных методов решения.

2. Место дисциплины в структуре ООП

Дисциплина «Электричество и магнетизм» изучается в модуле Общая физика Блока 1. Дисциплины обязательной части учебного плана ООП.

Курс «Электричество и магнетизм» является важной составной частью курса общей физики. Задача курса познакомить студентов с основными законами электромагнетизма. Особое внимание уделено экспериментальному обоснованию основных законов, а также различным вариантам их математического описания. физическими Студенты знакомятся c основами электротехники радиоэлектроники, на практических занятиях проводят расчеты линейных и нелинейных электрических цепей постоянного и переменного тока, движения частиц в электромагнитных полях различной конфигурации. Уровень начальной подготовки обучающегося для успешного освоения дисциплины: Иметь представление об основных понятиях и законах электричества и магнетизма в рамках программы средней школы; Знать алгебру, геометрию и основы математического анализа в рамках программы средней школы и 1-го курса университета. Теоретические дисциплины (или модули) и практики, для которых освоение данной дисциплины (или модуля) необходимо как предшествующее: общий физический практикум, курсы общей и теоретической физики.

3. Объем дисциплины: $\underline{4}$ зачетных единиц, $\underline{144}$ академических часов, в том числе:

контактная аудиторная работа: лекции 34 часа, практические занятия 34 часа;

самостоятельная работа: 76 часов, в том числе контроль 27 часов.

4. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Планируемые результаты освоения	Планируемые результаты обучения по			
образовательной программы	дисциплине			
(формируемые компетенции)				
УК-1. Способен осуществлять поиск,	УК-1.1. Анализирует задачу, выделяя ее базовые			
критический анализ и синтез информации,	составляющие;			
применять системный подход для	УК-1.5. Рассматривает и предлагает возможные			
решения поставленных задач	варианты решения поставленной задачи, оценивая			
	их достоинства и недостатки.			
ОПК-1. Способен анализировать задачи	ОПК-1.2. Анализирует физические объекты и			
профессиональной деятельности на	процессы используя положения, законы и методы			
основе положений, законов и методов в	естественных и технических наук			
области математики, естественных и	и ОПК-1.3. Осуществляет поиск и анализ			
технических наук.	информации в рамках поставленной задачи,			
	используя знание положений, законов и методов			
	физики.			
ОПК-2. Способен формулировать задачи	ОПК-2.2. Предлагает возможные варианты			
профессиональной деятельности на	решения поставленной задачи, используя			
основе знаний профильных разделов	положения, законы и методы физики.			
математических, технических и				
естественно-научных дисциплин				
(модулей).				

5. Форма промежуточной аттестации и семестр прохождения

Экзамен в 3 семестре.

6. Язык преподавания: русский.

II. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий.

1.Для студентов очной формы обучения

Учебная программа – наименование разделов и тем	Всего (час.)	Контактная работа (час.)		Самостоят ельная работа, в том числе Контроль (час.)		
		Лек	щии	-	ические	
		расто	D 77.11		тия	
		всего	в т.ч. ПП	всего	в т.ч. ПП	
1. Электрические заряды и электрическое поле. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции. Поток вектора напряженности электрического поля. Теорема Гаусса и её применение к расчету электростатических полей.	10	3		3		4
2. Работа сил электростатического поля. Потенциал. Энергия системы зарядов. Связь между напряженностью и потенциалом. Теорема Гаусса в дифференциальной форме. Уравнения Пуассона и Лапласа.	10	3		3		4
3. Электрический диполь. Поле диполя. Диполь во внешнем электрическом поле.	8	2		2		4
4. Проводники в электростатическом поле. Граничные условия. Метод изображений. Электрическая емкость. Конденсаторы. Энергия взаимодействия зарядов. Плотность энергии электростатического поля	10	3		3		4
5. Диэлектрики в электростатическом поле. Поляризационные заряды. Вектор поляризации. Электрическое поле в диэлектриках. Диэлектрическая проницаемость. Вектор D электрической индукции (смещения). Теорема Гаусса для вектора D . Граничные условия в диэлектриках. Сегнетоэлектрики и пьезо-электрики.	10	3		3		4
6. Постоянный электрический ток. Уравнение непрерывности. Законы Ома и Джоуля-Ленца. ЭДС источника тока. Закон Ома для полной цепи. КПД источника тока. Закон Ома для	10	3		3		4

неоднородного (содержащего ЭДС)				
участка цепи. Разветвленные				
электрические цепи. Правила Кирхгофа.				
7. Взаимодействие электрических токов.	10	3	3	4
Магнитное поле. Закон Био-Савара-				
Лапласа и примеры его применения				
(поле в центре кругового витка, поле				
прямого тока). Циркуляция магнитного				
поля. Поле соленоида. Теорема о				
циркуляции магнитного поля в				
дифференциальной форме.				
8. Сила Лоренца и сила Ампера.	10	3	3	4
Движение заряженных частиц в				
магнитном поле. Контур с током в				
магнитном поле. Момент сил,				
действующий на контур. Магнитный				
момент.				
9. Явление электромагнитной индукции.	8	2	2	4
Закон Фарадея, правило Ленца. Вихревое				
электрическое поле и его циркуляция.				
Явление самоиндукции. Индуктивность.				
Энергия магнитного поля.				
10. Относительный характер	7	2	2	3
электрического и магнитного полей.				
Преобразование электромагнитного поля				
при переходе в другую инерциальную				
систему отсчета. Ток смещения.				
Обобщение теоремы о циркуляции				
магнитного поля.				
12. Магнитное поле в веществе.	7	2	2	3
Намагниченность. Напряженность				
магнитного поля. Магнитная восприим-				
чивость и магнитная проницаемость.				
Виды магнетиков. Диа-, пара- и				
ферромагнетики. Условия на границе				
раздела магнетиков. Электромагнит с				
ферромагнитным сердечником.				
Плотность энергии электрического и				
магнитного поля в веществе.				
13. Уравнения Максвелла в интегральной	7	2	 2	3
и дифференциальной форме. Теорема				
Пойнтинга. Электромагнитные волны.				
Свойства электромагнитных волн.				
Экзамен	27	_		27
Итого	144	34	34	76

III. Образовательные технологии

Учебная программах-	Вид занятия	Образовательные технологии
наименование разлелов и тем		

1. Электрические заряды и электрическое поле. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции. Поток вектора напряженности электрического поля. Теорема Гаусса и её применение к расчету электростатических полей.	Лекции, занятия	практические	1.Изложение теоретического материала (презентация) 2.Решение задач 3.Самостоятельное изучение теоретического материала
2. Работа сил электростатического поля. Потенциал. Энергия системы зарядов. Связь между напряженностью и потенциалом. Теорема Гаусса в дифференциальной форме. Уравнения Пуассона и Лапласа.	Лекции, занятия	практические	1.Изложение теоретического материала (презентация) 2.Решение задач 3.Самостоятельное изучение теоретического материала
3. Электрический диполь. Поле диполя. Диполь во внешнем электрическом поле.	Лекции, занятия	практические	1.Изложение теоретического материала (презентация) 2.Решение задач 3.Самостоятельное изучение теоретического материала
4. Проводники в электростатическом поле. Граничные условия. Метод изображений. Электрическая емкость. Конденсаторы. Энергия взаимодействия зарядов. Плотность энергии электростатического поля	Лекции, занятия	практические	1.Изложение теоретического материала (презентация) 2.Решение задач 3.Самостоятельное изучение теоретического материала
5. Диэлектрики в электростатическом поле. Поляризационные заряды. Вектор поляризации. Электрическое поле в диэлектриках. Диэлектрическая проницаемость. Вектор D электрической индукции (смещения). Теорема Гаусса для вектора D . Граничные условия в диэлектриках. Сегнетоэлектрики и пьезо-электрики.	Лекции, занятия	практические	1.Изложение теоретического материала (презентация) 2.Решение задач 3.Самостоятельное изучение теоретического материала
6. Постоянный электрический ток. Уравнение непрерывности. Законы Ома и Джоуля-Ленца. ЭДС источника тока. Закон Ома	Лекции, занятия	практические	1.Изложение теоретического материала (презентация) 2.Решение задач 3.Самостоятельное изучение теоретического материала

	T		
для полной цепи. КПД			
источника тока. Закон Ома			
для неоднородного			
(содержащего ЭДС) участка			
цепи. Разветвленные			
электрические цепи. Правила			
Кирхгофа.			
7. Взаимодействие	Лекции,	практические	1.Изложение теоретического
электрических токов.	занятия	•	материала (презентация)
Магнитное поле. Закон Био-			2.Решение задач
Савара-Лапласа и примеры			3.Самостоятельное изучение
его применения (поле в			теоретического материала
центре кругового витка, поле			
прямого тока). Циркуляция			
магнитного поля. Поле			
соленоида. Теорема о			
циркуляции магнитного поля			
в дифференциальной форме.			
8. Сила Лоренца и сила	Лекции,	практические	1.Изложение теоретического
Ампера. Движение	занятия	1	материала (презентация)
заряженных частиц в			2.Решение задач
магнитном поле. Контур с			3.Самостоятельное изучение
током в магнитном поле.			теоретического материала
Момент сил, действующий на			
контур. Магнитный момент.			
9. Явление электромагнитной	Лекции,	практические	1.Изложение теоретического
индукции. Закон Фарадея,	занятия	1	материала (презентация)
правило Ленца. Вихревое			2.Решение задач
электрическое поле и его			3.Самостоятельное изучение
циркуляция. Явление			теоретического материала
самоиндукции.			
Индуктивность. Энергия			
магнитного поля.			
10. Относительный характер	Лекции,	практические	1.Изложение теоретического
электрического и магнитного	занятия	F	материала (презентация)
полей. Преобразование			2.Решение задач
электромагнитного поля при			3.Самостоятельное изучение
переходе в другую			теоретического материала
инерциальную систему			Teoperii teekere marepitana
отсчета. Ток смещения.			
Обобщение теоремы о			
циркуляции магнитного поля.			
12. Магнитное поле в	Лекции,	практические	1.Изложение теоретического
веществе. Намагниченность.	занятия	II PARTITI TOORITO	материала (презентация)
Напряженность магнитного			2.Решение задач
поля. Магнитная восприим-			3.Самостоятельное изучение
чивость и магнитная			теоретического материала
проницаемость. Виды			F
магнетиков. Диа-, пара- и			
ферромагнетики. Условия на			
границе раздела магнетиков.			
Электромагнит с			
STORT POMALIMITO	I		

ферромагнитным сердечником. Плотность энергии электрического и магнитного поля в веществе.			
13. Уравнения Максвелла в интегральной и дифференциальной форме. Теорема Пойнтинга. Электромагнитные волны. Свойства электромагнитных волн.	Лекции, занятия	практические	1.Изложение теоретического материала (презентация) 2.Решение задач 3.Самостоятельное изучение теоретического материала

IV. Оценочные материалы для проведения текущей и промежуточной аттестации

Форма проведения экзамена: студенты, освоившие программу курса «Электричество и магнетизм» могут получить оценку по итогам семестровой и полусеместровой рейтинговой аттестации согласно «Положению о рейтинговой системе обучения ТвГУ» (протокол №8 от 30 апреля 2020 г.).

Если условия «Положения о рейтинговой системе ...» не выполнены, то экзамен сдается согласно «Положению о промежуточной аттестации (экзаменах и зачетах) обучающихся по программам высшего образования ТвГУ» (протокол №11 от 28 апреля 2021 г.)

Для проведения текущей и промежуточной аттестации:

- **УК-1.** Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач:
- УК-1.1. Анализирует задачу, выделяя ее базовые составляющие;
- УК-1.5. Рассматривает и предлагает возможные варианты решения поставленной задачи, оценивая их достоинства и недостатки.

Для всех индикаторов один способ аттестации:

Задание:

Укажите не менее двух справедливых утверждений относительно статических магнитных полей:

Магнитное поле действует на заряженную частицу с силой, пропорциональной скорости частицы.

2) Силовые линии магнитного поля разомкнуты.

3) Циркуляция вектора напряженности магнитного поля ВДОЛЬ произвольного замкнутого контура определяется токами, охватываемыми этим контуром.

Способ аттестации: письменный

Критерии оценки: •

- **Высокий уровень** (3 балла): Выбирает правильные ответы на поставленный

вопрос. Не допускает ошибки.

- Средний уровень (2 балла): Выбирает один правильный ответ. Не допускает

ошибки.

- Низкий уровень (1 балл): Выбирает несколько ответов. Присутствует

минимум 1 правильный ответ и один неправильный.

ОПК-1. Способен анализировать задачи профессиональной деятельности на

основе положений, законов и методов в области математики, естественных и

технических наук:

ОПК-1.2. Анализирует физические объекты и процессы используя

положения, законы и методы естественных и технических наук

ОПК-1.3. Осуществляет поиск и анализ информации в рамках поставленной

задачи, используя знание положений, законов и методов физики.

Задание:

Металлический шар радиусом R=5 см окружен равномерно слоем фарфора

 $(\varepsilon=5,0)$ толщиной d=2 см. Определите поверхностные плотности σ'_1 и σ'_2 связанных

зарядов соответственно на внутренней и внешней поверхностях диэлектрика. Заряд

Q шара равен 10 нКл.

Способ аттестации: письменный.

Критерии оценки: •

- *Высокий уровень (3 балла):* Понимает физику явления. Составляет математические выражения для получения решения. Получает правильный ответ.
- *Средний уровень (2 балла):* Понимает физику явления. Испытывает сложности с составлением математических выражений для получения решения. Получает правильный ответ.
- *Низкий уровень (1 балл):* Понимает физику явления. Испытывает трудности с составлением правильных математических соотношений. Совершает алгебраические ошибки.
- ОПК-2. Способен формулировать задачи профессиональной деятельности на основе знаний профильных разделов математических, технических и естественно-научных дисциплин (модулей).
- ОПК-2.2. Предлагает возможные варианты решения поставленной задачи, используя положения, законы и методы физики.

Задание:

Колебательный контур состоит из последовательно соединенных емкости, индуктивности и резистора. К контуру подключено переменное напряжение При некоторой частоте внешнего напряжения амплитуды падений напряжений на элементах цепи соответственно равны $U_R = 4~B,\ U_L = 3~B,\ U_C = 6~B.$ При этом амплитуда приложенного напряжения равна...

Способ аттестации: письменный

Критерии оценки: •

- *Высокий уровень (3 балла):* Понимает физику явления. Составляет математические выражения для получения решения. Получает правильный ответ.
- *Средний уровень (2 балла):* Понимает физику явления. Испытывает сложности с составлением математических выражений для получения решения. Получает правильный ответ.
- *Низкий уровень (1 балл):* Понимает физику явления. Испытывает сложности с составлением математических выражений для получения решения. Из-за алгебраической неточности не получает правильный ответ.

V. Учебно-методическое и информационное обеспечение дисциплины

- 1) Рекомендуемая литература
- а) Основная литература:
- 1. Савельев И. В. Курс общей физики. В 5-и тт. Том 2. Электричество и магнетизм [Электронный ресурс]: учеб. пособие. СПб.: Лань, 2011. 352 с. Режим доступа: https://e.lanbook.com/book/705.
- 2. Кузнецов С. И. Курс физики с примерами решения задач. Часть II. Электричество и магнетизм. Колебания и волны [Электронный ресурс]: учеб. пособие. СПб.: Лань, 2014. 416 с. Режим доступа: https://e.lanbook.com/book/53682.
- 3. Электричество и магнетизм [Электронный ресурс]: учеб. пособие. СПб.: Лань, 2017. 160 с. Режим доступа: https://e.lanbook.com/book/91880.
 - б) Дополнительная литература:
- 1. Савельев И. В. Курс общей физики. В 3 т. Том 2. Электричество и магнетизм. Волны. Оптика: Учебное пособие [Электронный ресурс]: учеб. пособие. СПб.: Лань, 2017. 500 с. Режим доступа: https://e.lanbook.com/book/98246.
- 2. Зисман Г. А. Курс общей физики. В 3-х тт. Т.2. Электричество и магнетизм [Электронный ресурс]: учеб. пособие. СПб.: Лань, 2007. 352 с. Режим доступа: https://e.lanbook.com/book/151.
 - 2) Программное обеспечение
 - а) Лицензионное программное обеспечение
 - б) Свободно распространяемое программное обеспечение
 - 3) Современные профессиональные базы данных и информационные справочные системы
- 1. Научная библиотека ТвГУ: http://library.tversu.ru/
- 2. Электронная библиотека издательства Лань: http://e.lanbook.com/
- 3. ∂EC «ZNANIUM.COM» <u>www.znanium.com</u>;
- 4. ЭБС «Университетская библиотека онлайн» https://biblioclub.ru;

- 5. Сайт издательского дома ЮРАЙТ: http://www.biblio-online.ru/
- 4) Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

VI. Методические материалы для обучающихся по освоению дисциплины

– Планы практических (семинарских) занятий:

Семинар 1. Решение задач на тему «Закон Кулона. Напряженность электрического поля. Принцип суперпозиции».

Примеры задач:

- 1. Два шарика массой m=0,1 г каждый подвешены в одной точке на нитях длиной L=20 см каждая. Получив одинаковый заряд, шарики разошлись так, что нити образовали между собой угол $\alpha=60^\circ$. Найдите заряд каждого шарика.
- 2. Расстояние d между двумя точечными положительными зарядами $Q_1 = 9Q$ и $Q_2 = Q$ равно 8 см. На каком расстоянии r от первого заряда находится точка, в которой напряженность E поля зарядов равна нулю? Где находилась бы эта точка, если бы второй заряд был отрицательным?

Семинар 2. Решение задач на тему «Теорема Гаусса и её применение к расчету электростатических полей».

Примеры задач:

- **1.** Найдите напряженность электрического поля в центре основания полусферы, заряженной равномерно с поверхностной плотностью $\sigma = 60$ нКл/м².
- 2. Две бесконечные параллельные пластины равномерно заряжены с поверхностной плотностью $\sigma_1 = 10$ нКл/м² и $\sigma_2 = -30$ нКл/м². Определите силу взаимодействия между пластинами, приходящуюся на площадь S, равную 1 м².

Семинар 3. Решение задач на тему «Работа сил электростатического поля. Потенциал. Энергия системы зарядов. Связь между напряженностью и потенциалом».

Примеры задач:

1. Две бесконечные параллельные пластины находятся на расстоянии d=1 см друг от друга. По плоскостям равномерно распределены заряды с плотностями $\sigma_1 = 0.2$ мкКл/м² и $\sigma_2 = 0.5$ мкКл/м². Найдите разность потенциалов U между пластинами.

Семинар 4. Решение задач на тему «Проводники в электростатическом поле. Граничные условия. Метод изображений».

Примеры задач:

- 1. Система состоит из двух концентрических проводящих сфер. На внутренней сфере радиуса а находится положительный заряд q₁. Какой заряд q₂ следует поместить на внешнюю сферу радиуса b, чтобы потенциал φ внутренней сферы стал равным нулю? Как будет зависеть при этом φ от расстояния r до центра сферы? Изобразите примерный график φ(r).
- 2. Расстояние d между двумя точечными положительными зарядами $Q_1 = 9Q$ и $Q_2 = Q$ равно 8 см. На каком расстоянии r от первого заряда находится точка, в которой напряженность E поля зарядов равна нулю? Где находилась бы эта точка, если бы второй заряд был отрицательным?

Семинар 5. Решение задач на тему «Электрическая емкость. Конденсаторы». Примеры задач:

- 1. Конденсаторы C_1 =1 мкФ, C_2 =2 мкФ, C_3 =3 мкФ включены в цепь с напряжением U =1,1 кВ. Определите энергию каждого конденсатора при: 1) последовательном их включении; 2) параллельном включении.
- 2. Емкость плоского конденсатора равна 111 пФ. Диэлектрик пластинка из фарфора (ϵ =5,0). Конденсатор зарядили до напряжения U=600 В и отключили

от источника. Какую работу А нужно совершить, чтобы вынуть диэлектрик из конденсатора?

Семинар 6. Решение задач на тему «Электрическое поле в диэлектриках. Вектор поляризации. Диэлектрическая проницаемость. Граничные условия в диэлектриках».

Примеры задач:

- 1. У плоской поверхности однородного диэлектрика с проницаемостью ϵ напряженность электрического поля в вакууме равна E_0 , причем вектор E_0 составляет угол θ с нормалью к поверхности диэлектрика. Считая поле внутри и вне диэлектрика однородным, найдите: а) поток вектора E через сферу радиуса R с центром на поверхности диэлектрика; б) циркуляцию вектора D по прямоугольному контуру, одна сторона которого длины L расположена в вакууме, а противоположная ей сторона в диэлектрике. Плоскость контура перпендикулярна поверхности диэлектрика и параллельна вектору E_0 .
- 2. Диэлектрик с проницаемостью ε граничит с вакуумом. На его поверхности имеются сторонние заряды с плотностью σ. У поверхности диэлектрика в вакууме напряженность электрического поля равна Е, причем вектор Е составляет такой угол θ с нормалью к поверхности раздела, что линии вектора Е не терпят излома при переходе границы раздела. Найдите угол θ. Каков должен быть знак σ?

Семинар 7. Решение задач на тему «Постоянный электрический ток. Законы Ома и Джоуля-Ленца. ЭДС источника тока. Закон Ома для полной цепи. КПД источника тока».

Примеры задач:

1. При силе тока I_1 =3 A во внешней цепи аккумулятора выделяется мощность P_1 =18 Bt, при силе тока I_2 =1 A - соответственно P_2 = 10 Bt. Определите ЭДС - ϵ и внутреннее сопротивление r батареи.

2. ЭДС ε батареи равна 20 В. Сопротивление R внешней цепи равно 2 Ом, сила тока I=4 А. Найдите КПД батареи. При каком внешнем сопротивлении R КПД будет равен 99%?

Семинар 8. Решение задач на тему «Закон Ома для неоднородного (содержащего ЭДС) участка цепи. Разветвленные электрические цепи. Правила Кирхгофа».

Примеры задач:

- 1. Определите силу тока I_3 в резисторе сопротивлением R_3 (см. рисунок) и напряжение U_3 концах резистора, если ε_1 =4 В, ε_2 =3 В, R_1 =2 Ом, R_3 =1 Ом. Внутренними сопротивлениями источников тока пренебречь.
- 2. Три источника тока с ЭДС ϵ_1 = 11 В, ϵ_2 = 4 В и ϵ_3 = 6 В реостата с сопротивлениями R_1 =5 Ом, R_2 =10 Ом и Соединены, как показано на рисунке. Определите токов I в реостатах. Внутреннее сопротивление источника тока пренебрежимо мало.

Семинар 9. Решение задач на тему «Взаимодействие электрических токов. Магнитное поле. Закон Био-Савара-Лапласа и примеры его применения».

Примеры задач:

- $1.\ \Pi$ ри какой силе тока I, текущего по тонкому проводящему кольцу радиусом R=0,2 м, магнитная индукция B в точке, равноудаленной от всех точек кольца на расстояние r=0,3 м, станет равной 20 мкTл?
- 2. Бесконечно длинный прямой провод согнут под прямым углом. По проводу течет ток I = 100 А. Вычислите магнитную индукцию В в точках, лежащих на биссектрисе угла и удаленных от вершины угла на a = 10 см.

Семинар 10. Решение задач на тему «Сила Лоренца и сила Ампера. Движение заряженных частиц в магнитном поле. Контур с током в магнитном поле».

Примеры задач:

- 1. Заряженная частица влетела перпендикулярно линиям индукции в однородное магнитное поле, созданное в среде. В результате взаимодействия с веществом частица, находясь в поле, потеряла половину своей первоначальной энергии. Во сколько раз будут отличаться радиусы кривизны R траектории начала и конца пути?
- 2. Электрон движется в однородном магнитном поле с индукцией B=9 мТл по винтовой линии, радиус которой R=1 см и шаг h=7,8 см. Определите период Т обращения электрона и его скорость υ .

Семинар 11. Решение задач на тему «Явление электромагнитной индукции. Закон Фарадея, правило Ленца».

Примеры задач:

- В однородном магнитном поле с индукцией В = 1 Тл находится прямой провод длиной l = 20 см, концы которого замкнуты вне поля. Сопротивление R всей цепи равно 0,1 Ом. Найдите силу F, которую нужно приложить к проводу, чтобы перемещать его перпендикулярно линиям индукции со скоростью υ = 2,5 м/с.
- 2. Проволочное кольцо радиусом r=10 см лежит на столе. Какое количество электричества Q протечет по кольцу, если его повернуть с одной стороны на другую? Сопротивление R кольца равно 1 Ом. Вертикальная составляющая индукции В магнитного поля Земли равна 50 мкТл.
- **Семинар 12.** Решение задач на тему «Явление самоиндукции. Индуктивность. Энергия магнитного поля».

Примеры задач:

1. Катушку индуктивности L = 300 мГн с сопротивлением R = 140 мОм подключили к постоянному напряжению. Через сколько времени ток через катушку достигнет $\eta = 50\%$ установившегося значения?

2. Сверхпроводящее кольцо радиуса а, имеющее индуктивность L, находится в однородном магнитном поле с индукцией В. Плоскость кольца параллельна вектору **B**, ток в кольце равен нулю. Затем плоскость кольца повернули на 90° в положение, перпендикулярное полю. Найдите ток I в кольце после поворота и работу A, совершенную при этом.

- Сборники задач:

- 1. «Сборник задач по общему курсу физики». Часть 3. Электричество. Под ред. Д.В. Сивухина. М.: Физматлит, 2006.
- 2. «Сборник задач по общему курсу физики». Часть 2. Электричество и магнетизм. Оптика. Под ред. В.А. Овчинкина. М., Физматкнига, 2004.
- 3. Иродов И.Е. «Задачи по общей физике». М.: ЗАО «Издательство БИНОМ», 1998.

- Методические рекомендации по организации самостоятельной работы студентов:

- 1. Изучить рекомендуемую литературу.
- 2. Просмотреть задачи, разобранные на аудиторных занятиях.
- 3. Разобрать задачи, рекомендованные преподавателем для самостоятельного решения, используя, при необходимости, примеры решения аналогичных задач.
- 4. Обсудить проблемы, возникшие при решении задач с преподавателем.
- **-Требования к рейтинг-контролю.** В течение семестра два раза (на модульных неделях) необходимо:
 - 1) сдать преподавателю решения домашних задач, полученных из указанных сборников задач,
 - 2) ответить письменно на теоретические вопросы. Примеры вопросов

Модуль 1.

1. Сформулируйте закон Кулона. Дайте определение напряженности электрического поля. Приведите примеры использования принципа суперпозиции.

- 2. Сформулируйте теорему Гаусса и приведите примеры её применения к расчету электростатических полей.
- 3. Работа сил электростатического поля. Потенциал. Связь между напряженностью и потенциалом.
- 4. Энергия взаимодействия электрических зарядов. Плотность энергии электростатического поля.
- 5. Получите уравнения Пуассона и Лапласа, используя теорему Гаусса в дифференциальной форме.
- 6. Электрический диполь. Поле диполя.
- 7. Диполь во внешнем электрическом поле.
- 8. Проводники в электростатическом поле. Граничные условия. Метод изображений.
- 9. Электрическая емкость. Конденсаторы.
- 10. Диэлектрики в электростатическом поле. Поляризационные заряды. Вектор поляризации.
- 11. Электрическое поле в диэлектриках. Вектор **D** электрической индукции (смещения). Граничные условия в диэлектриках.
- 12.Постоянный электрический ток. Законы Ома и Джоуля-Ленца.
- 13.ЭДС источника тока. Закон Ома для полной цепи.
- 14. Закон Ома для неоднородного (содержащего ЭДС) участка цепи. Правила Кирхгофа.
- 15. Взаимодействие электрических токов. Магнитное поле. Закон Био-Савара-Лапласа и примеры его применения (поле в центре кругового витка, поле прямого тока).
- 16.Определите с помощью теоремы Гаусса напряженность поля **E** вблизи равномерно заряженной плоскости.
- 17. Как связаны между собой электрическое поле Е и потенциал ф?
- 18. Чему равен момент сил, действующих на диполь во внешнем электрическом поле?
- 19. Чему равна энергия диполя во внешнем электрическом поле?

20. Что называется ЭДС источника тока? Запишите закон Ома для полной цепи.

Модуль 2.

- 1. Циркуляция магнитного поля. Поле соленоида.
- 2. Сила Лоренца и сила Ампера. Движение заряженных частиц в магнитном поле.
- 3. Контур с током в магнитном поле. Момент сил, действующий на контур. Магнитный момент.
- 4. Явление электромагнитной индукции. Закон Фарадея, правило Ленца. Вихревое электрическое поле и его циркуляция.
- 5. Явление самоиндукции. Индуктивность. Энергия магнитного поля.
- 6. Колебательный контур. Свободные колебания в контуре с пренебрежимо малым затуханием.
- 7. Свободные затухающие колебания.
- 8. Вынужденные электрические колебания. Резонанс.
- 9. Цепи переменного тока.
- 10. Магнитное поле в веществе. Намагниченность. Напряженность магнитного поля.
- 11. Ток смещения. Обобщение теоремы о циркуляции магнитного поля.
- 12. Уравнения Максвелла в интегральной и дифференциальной форме.
- 13. Электромагнитные волны.
- 14. Теорема Пойнтинга. Что называется вектором Пойнтинга?
- 15. Напишите выражение для плотности тока носителей заряда, имеющих концентрацию n и среднюю скорость упорядоченного движения **u**.
- 16. Рассчитайте индукцию поля B соленоиде через циркуляцию магнитного поля.
- 17. Рассчитайте момент сил, действующий на контур с током в магнитном поле.
- 18.Получите выражение для периода свободных колебаний в контуре с пренебрежимо малым затуханием.
- 19. Напишите уравнение свободных колебаний в LCR контуре.

20. Что такое логарифмический декремент затухания и добротность колебательного контура? Каков их физический смысл?

VII. Материально-техническое обеспечение

Наименование специальных* помещений	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения. Реквизиты подтверждающего документа
Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации Лекционная аудитория № 227 (170002 Тверская обл., г.	1. Проектор Panasonic PT- VW340ZE 2. экран ScreenMedia 3. Ноутбук (переносной) 4. Комплект учебной мебели на 60 посадочных мест 5. Меловая доска	Microsoft Windows 10 Enterprise - Акт на передачу прав №785 от 06.08.2021 г. MS Office 365 pro plus - Акт на передачу прав №785 от 06.08.2021 г. Асговат Reader DC - бесплатно Google Chrome – бесплатно
Тверь, Садовый пер., д. 35) Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации Лекционная аудитория № 226 (170002 Тверская обл., г. Тверь, Садовый пер., д. 35)	1 Микшерный пульт Yamaha MG-124C 2 Аудиокомплект (мик. пульт, акуст. усилитель, акуст. система, радиосистема) 3 Интерактивная система SMART Board 660i4 4 Мультимедийный проектор Epson EB-4850WU с потолочным креплением 5 Телекоммуникационный шкаф ШТК-М-18.6.6-3AAA с полками 6 Телекоммуникационный шкаф ШТК-М-18.6.6-3AAA с полками 7 Экран настенный Lumien 8 Комплект учебной мебели на 110 посадочных мест	Каspersky Endpoint Security 10 для Windows — Акт на передачу прав №785 от 06.08.2021 г. MS Office 365 pro plus - Акт на передачу прав №785 от 06.08.2021 г. Microsoft Windows 10 Enterprise - Акт на передачу прав №1051 от 05.08.2020 г. Microsoft Visual Studio 2019 - Акт на передачу прав №1051 от 05.08.2020 г. Mozilla Firefox -бесплатно

VIII. Сведения об обновлении рабочей программы дисциплины

№ п.п.	Обновленный раздел	Описание внесенных	Реквизиты документа,
	рабочей программы	изменений	утвердившего
	дисциплины		изменения
1.			
2.			