Документ подписан простой электронной подписью

Информация о владельце:

фио: Смирнов Сергей Министерство науки и высшего образования Российской Федерации

Должность: врио ректора

Дата подписания: 13.06.2023 09:46 ФГБОУ ВО «Тверской государственный университет»

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель ООП

Б.Б.Педько

июня

2022 г.

Рабочая программа дисциплины (с аннотацией)

Дифференциальные уравнения

Направление подготовки 03.03.03 Радиофизика

профиль

Физика и технология материалов и устройств радиоэлектроники

Для студентов 2 курса, очной формы обучения

Составитель: к.ф.-м.н. Кузнецова Ю.В.

І. Аннотация

1. Цель и задачи дисциплины

Целью освоения дисциплины «Дифференциальные уравнения» является получение знаний по методам решения обыкновенных дифференциальных уравнений, необходимых для освоения ООП и последующей профессиональной деятельности.

Задачами освоения дисциплины являются:

простейшие дифференциальные уравнения, линейные дифференциальные уравнения высших порядков и линейные системы дифференциальных уравнений с постоянными коэффициентами, уравнения в частных производных первого порядка.

2. Место дисциплины в структуре ООП

Дисциплина «Дифференциальные уравнения» изучается в модуле Математика Блока 1. Дисциплины обязательной части учебного плана ООП.

Дисциплина изучается в 4 семестре и следует за дисциплинами «Линейная алгебра и аналитическая геометрия» и «Математический анализ» и является основополагающей для последующих базовых учебных курсов, а также для дисциплин по углублению профессиональных компетенций.

Для освоения дисциплины от слушателей требуются следующие предварительные знания и навыки из курсов математического анализа и линейной алгебры: дифференцирование и интегрирование функций одной переменной, свойства определенных интегралов, вычисление и свойства частных производных и дифференциалов функций многих переменных первого и высших порядков, алгебраические операции над матрицами, вычисление собственных чисел и собственных векторов квадратных матриц, общие свойства линейных пространств и линейных операторов.

Дисциплина «Дифференциальные уравнения» обеспечивает изучение следующих дисциплин: «Теоретическая механика» и «Линейные и нелинейные уравнения физики».

3. Объем дисциплины: $\underline{4}$ зачетные единицы, $\underline{144}$ академических часа, в том числе:

контактная аудиторная работа: лекции $\underline{16}$ часов, практические занятия $\underline{48}$ часов;

самостоятельная работа: 80 часов, в том числе контроль 27 часов.

4. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Планируемые результаты освоения	Планируемые результаты обучения по дисциплине
образовательной программы	
(формируемые компетенции)	
УК-1. Способен осуществлять поиск, критический анализ и синтез информации,	УК-1.1. Анализирует задачу, выделяя ее базовые составляющие;
применять системный подход для решения	УК-1.2. Определяет, интерпретирует и ранжирует
поставленных задач	информацию, требуемую для решения
	поставленной задачи.
	УК-1.5. Рассматривает и предлагает возможные
	варианты решения поставленной задачи, оценивая
	их достоинства и недостатки.
ОПК-1. Способен применять базовые	ОПК-1.1. Применяет базовые знания в области
знания в области физики и радиофизики и	физико-математических наук для решения задач
использовать их в профессиональной	профессиональной деятельности.
деятельности, в том числе в сфере	
педагогической деятельности.	

5. Форма промежуточной аттестации и семестр прохождения

Экзамен в 4 семестре.

6. Язык преподавания: русский.

II. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий.

1.Для студентов очной формы обучения

Учебная программа – наименование разделов и тем	Всего (час.)	Контактная работа (час.)		Самостоя тельная работа, в том числе Контроль (час.)		
		Лекции Практические занятия				
		всего	в т.ч. ПП	всего	в т.ч. ПП	
1. Общие понятия. Интегрируемые типы уравнений первого порядка, разрешенные относительно производной.	8	1		4		3
2. Вопросы существования решений уравнений первого порядка, разрешенного относительно производной	10	2		5		3
3. Уравнения первого порядка, не разрешенные относительно производной	14	2		6		6
Промежуточное аттестационное занятие	2			2		
4. Дифференциальные уравнения высших порядков.	14	2		6		6
5.Общая теория линейных дифференциальных уравнений	16	3		6		7
6. Частные виды линейных дифференциальных уравнений	15	2		5		8
7.Системы обыкновенных дифференциальных уравнений.	18	2		6		10
8. Уравнения в частных производных первого порядка	18	2		6		10
Промежуточное аттестационное занятие	2			2		
экзамен	27					27
ИТОГО:	144	16		48		80

III. Образовательные технологии

Учебная программах-	Вид занятия	Образовательные технологии		
наименование разделов и тем				
1. Общие понятия.	Лекции, практические	Активное слушание.		
Интегрируемые типы	занятия	Групповое решение задач.		
уравнений первого порядка,		Решение индивидуальных		
разрешенные относительно		задач		

производной.				
2. Вопросы существования решений уравнений первого порядка, разрешенного относительно производной	Лекции, занятия	практические	Активное Групповое Решение задач	слушание. решение задач. индивидуальных
3. Уравнения первого порядка, не разрешенные относительно производной	Лекции, занятия	практические	Активное Групповое Решение задач	слушание. решение задач. индивидуальных
4. Дифференциальные уравнения высших порядков.	Лекции, занятия	практические	Активное Групповое Решение задач	слушание. решение задач. индивидуальных
5.Общая теория линейных дифференциальных уравнений	Лекции, занятия	практические	Активное Групповое Решение задач	слушание. решение задач. индивидуальных
6. Частные виды линейных дифференциальных уравнений	Лекции, занятия	практические	Активное Групповое Решение задач	слушание. решение задач. индивидуальных
7.Системы обыкновенных дифференциальных уравнений.	Лекции, занятия	практические	Активное Групповое Решение задач	слушание. решение задач. индивидуальных
8. Уравнения в частных производных первого порядка	Лекции, занятия	практические	Активное Групповое Решение задач	слушание. решение задач. индивидуальных

Преподавание учебной дисциплины строится на сочетании лекций, практических занятий и различных форм самостоятельной работы студентов. В процессе освоения дисциплины используются следующие образовательные способы технологии, методы формирования компетенций: лекции, занятия, выполнение индивидуальных заданий практические рамках самостоятельной работы. Самостоятельная работа студентов организуется в форме решения заданий по предложенным тематикам, а также выполнение письменных домашних заданий.

IV. Оценочные материалы для проведения текущей и промежуточной аттестации

Форма проведения экзамена: студенты, освоившие программу курса «Дифференциальные уравнения» могут получить оценку по итогам семестровой и полусеместровой рейтинговой аттестации согласно «Положению о рейтинговой системе обучения ТвГУ» (протокол №8 от 30 апреля 2020 г.).

Если условия «Положения о рейтинговой системе ...» не выполнены, то экзамен сдается согласно «Положению о промежуточной аттестации (экзаменах и зачетах) обучающихся по программам высшего образования ТвГУ» (протокол №11 от 28 апреля 2021 г.)

Для проведения текущей аттестации

Задание: №1 Найти интегрирующий множитель и решить уравнение:

$$(2xy^2-3y^3)dx+(7-3xy^2)dy=0, \mu=\omega(x)$$

<u>Планируемый результат:</u> найден интегрирующий множитель, получено необходимое и достаточное условие существования уравнения в полных дифференциалах, решено уравнение.

Задание: №2 Решить уравнение Эйлера: x²y//-xy/+2y=xlnx

<u>Планируемый результат:</u> Правильно применена подстановка, с помощью которой уравнение сведено к линейному уравнению с постоянными коэффициентами. Решено полученное уравнение, правильно записан ответ.

Задание: №3 Решить линейное дифференциальное уравнение с постоянными коэффициентами: y'''+2y''+y'=0

<u>Планируемый результат</u>: Правильно составлено характеристическое уравнение, найдены его корни и верно записано решение.

Для проведения промежуточной аттестации

ПРИМЕР ЗАДАНИЯ:

Решить контрольную работу (вариант 1):

$$N$$
○1
$$(x3+xy2)dx+(x2y+y3)dy$$
 N
○2

$(x+y^2)dx-2xydy=0, \mu=\omega(x)$				
<u>№</u> 3				
$y'=\exp(y'/y)$				
№4				
$y''=1+y'^2$				
№5				
y=2xy/+lny/				
№6				
y'''-2y''-3y'=0				
№7				
Решить уравнение Эйлера				
$x^2y''-xy'+2y=x\ln x$				
№8				
Проинтегрировать методом				
вариации постоянных				
следующие уравнения:				
y''+y=1/sinx				

<u>Планируемый результат</u>: Составляет алгоритм выполнения поставленной задачи, свободно применяет основные определения в поставленной задаче. Выполняет стандартный порядок действий, необходимый для решения уравнения и принятия необходимого решения.

Вид проведения: письменный

Критерии оценивания: За каждое правильно выполненное задание-2 балла. Итого 16 баллов.

Если допущены незначительные фактические ошибки, не искажающие общего смысла, то каждое задание оценивается в 1,5 балла.

Если имеется представление об алгоритме выполнения поставленной задачи, основных определений и выполнен стандартный порядок действий, необходимый

для решения уравнения, но допущены фактические ошибки, то задание опенивается в 1 балл.

Если знает базовые положения теории данного дифференциального уравнения, осуществляет основные алгоритмы решения и допускает ошибки, то задание оценивается в 0,5 балла.

Если допущены грубые ошибки, то задание оценивается в 0 баллов.

Шкала оценивания за весь семестр: Максимальная возможная оценка за модуль составляет 30 баллов. Она складывается из оценки за контрольную работу (максимум 16 баллов), за *задания для практических занятий* (максимум 10 баллов), за самостоятельную работу студентов и выполнение письменных домашних заданий (4 балла). Итого семестр: 60 баллов.

Для проведения текущей и промежуточной аттестации:

- УК-1. Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач:
- УК-1.1. Анализирует задачу, выделяя ее базовые составляющие;
- УК-1.2. Определяет, интерпретирует и ранжирует информацию, требуемую для решения поставленной задачи.
- УК-1.5. Рассматривает и предлагает возможные варианты решения поставленной задачи, оценивая их достоинства и недостатки.

Для всех индикаторов один способ аттестации.

Задание: Исследовать уравнения упругих колебаний с учетом трения и сопротивления среды (при α>0):

 $d2x/dt2+2\alpha \cdot dx/dt+\beta 2x=0$

Способ аттестации: письменный.

Критерии оценки:

- 1) владеет методами решения дифференциальных уравнений.
- 2) владеет методами анализа и обработки полученных результатов.
- 3) интерпретирует полученные результаты с учетом начальных условий, границ применимости теории или модели.

ОПК-1. Способен применять базовые знания в области физики и радиофизики и использовать их в профессиональной деятельности, в том числе в сфере педагогической деятельности:

ОПК-1.1. Применяет базовые знания в области физико-математических наук для решения задач профессиональной деятельности;

Задание: Последовательно включены: источник тока, напряжение которого меняется по закону: $E=Vsin\ \omega t$, сопротивление R и емкость C. Найти силу тока в цепи при установившемся режиме.

Способ аттестации: письменный

Критерии оценки:

- 1) Владеет методами решения дифференциальных уравнений.
- 2) Владеет методами анализа и обработки полученных результатов.
- 3) Использует приобретенные знания и умения при решении физических задач.

Задание: К источнику постоянного напряжения 60 В подключается контур, состоящий из последовательно соединенных катушки индуктивностью 5 Гн, резистора сопротивлением 40 Ом и конденсатора емкостью 2 нФ. Найти ток в цепи как функцию времени, если в начальный момент ток в контуре и заряд конденсатора равны нулю.

Способ аттестации: письменный

Критерии оценки:

- 1)Владеет методами решения дифференциальных уравнений.
- 2)Владеет методами анализа и обработки полученных результатов.
- 3)Использует приобретенные знания и умения при решении физических задач.

V. Учебно-методическое и информационное обеспечение дисциплины

- 1) Рекомендуемая литература
- а) Основная литература:
 - 1. Демидович Б. П. Дифференциальные уравнения [Электронный ресурс]: учеб. пособие / Б. П. Демидович, В. П. Моденов; Демидович Б. П., Моденов В. П. 4-е изд., стер. Санкт-Петербург: Лань, 2019. 280 с. Режим доступа: https://e.lanbook.com/book/115196
 - 2. Бибиков Ю. Н. Курс обыкновенных дифференциальных уравнений [Электронный ресурс] : учеб. пособие. Санкт-Петербург: Лань, 2011. 304 с. Режим доступа: https://e.lanbook.com/book/1542.
 - 3. Шестакова Е.Г. Дифференциальные уравнения первого порядка : учебнометодическое пособие по дисциплине "Дифференциальные уравнения" [Электронный ресурс]: Тверь : Тверской государственный университет, 2021. Режим доступа: http://megapro.tversu.ru/megaPro/UserEntry?Action=FindDocs&ids=5030757
 - 4. Щербакова Ю. В. Дифференциальные уравнения [Электронный ресурс] : Учебное пособие / Ю. В. Щербакова; Ю. В. Щербакова. Дифференциальные уравнения. Саратов : Научная книга, 2019. 159 с. Режим доступа: http://www.iprbookshop.ru/81007.html
- б) дополнительная литература:
- 1. <u>Пантелеев А. В.</u> Обыкновенные дифференциальные уравнения. Практикум М.: НИЦ ИНФРА-М, 2016. 432 с. -Электронный ресурс.- Режим доступа: http://znanium.com/catalog.php?bookinfo=549273
- 2. Бибиков Ю. Н.Дифференциальные уравнения Пфаффа на плоскости и в пространстве [Электронный ресурс] : учебное пособие / Ю. Н. Бибиков, В. Р. Букаты; Бибиков Ю. Н., Букаты В. Р. Санкт-Петербург : Лань, 2020. 68 с. Электронный ресурс.- Режим доступа: https://e.lanbook.com/book/126903
- 2) Современные профессиональные базы данных и информационные справочные системы:

- 1.ЭБС«ZNANIUM.COM» www.znanium.com;
- 2.ЭБС «Университетская библиотека онлайн» https://biblioclub.ru/;
- 3.ЭБС «Лань» http://e.lanbook.com
- 4. ЭБС «ЮРАИТ»
- 5. ЭБС «Университетская библиотека онлайн»
- 3) Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины:
 - 1. Сервер доступа к модульной объектно-ориентированной динамической учебной среде Moodle http://moodle.tversu.ru
 - 2. Научная электронная библиотека eLibrary.ru;
 - 3. Информационная система «Единое окно доступа к образовательным ресурсам» http://window.edu.ru.

VI. Методические материалы для обучающихся по освоению дисциплины

- 1) Вопросы для подготовки к экзамену:
- 1. Дифференциальные уравнения (ДУ) первого порядка. Основные понятия. Интегральные кривые. Задача Коши. Физические и геометрические задачи, приводящие к дифференциальным уравнениям.
 - 2. Уравнения с разделяющимися переменными и приводящиеся к ним.
 - 3. Однородные уравнения и приводящиеся к ним.
 - 4. Линейные уравнения 1-го порядка и приводящиеся к ним. Примеры.
- 5. Теорема об общем решении линейного дифференциального уравнения первого порядка. Метод вариации постоянных.
- 6. Уравнения в полных дифференциалах. Признак уравнения в полных дифференциалах. Интегрирующий множитель.
- 7. Дифференциальные уравнения первого порядка, не разрешенные относительно производной. Метод введения параметров. Уравнение Лагранжа. Уравнение Клеро.

- 8. Дифференциальные уравнения n-го порядка. Основные понятия и определения. Уравнения высших порядков, допускающие понижение порядка. Примеры.
- 9. Линейные дифференциальные уравнения. Линейный дифференциальный оператор.
- 10. Линейные однородные дифференциальные уравнения высших порядков. Свойства их решений.
- 11. Определитель Вронского. Теорема об определителе Вронского (необходимое условие линейной зависимости системы функций). Условие линейной независимости решений линейного однородного уравнения.
 - 12. Линейные однородные уравнения с постоянными коэффициентами.
 - 13. Линейные неоднородные уравнения. Структура общего решения.
- 14. Метод Лагранжа вариации произвольных постоянных как метод нахождения частного решения линейного неоднородного дифференциального уравнения.
- 15. Линейные неоднородные дифференциальные уравнения с правой частью специального вида. Уравнения, приводящиеся к уравнениям с постоянными коэффициентами.
 - 16. Системы линейных Д.У. с постоянными коэффициентами.
- 17. Интегрирование систем Д.У. Приближенные методы интегрирования уравнений 1-ого порядка и систем уравнений.
 - 18. Особые точки дифференциального уравнения и системы ДУ.
 - 19. Уравнения в частных производных первого порядка

2) Вопросы для самостоятельного изучения

- 1. Изоклины. Составление дифференциального уравнения семейства кривых.
- 2. Геометрические и физические задачи.
- 3. Однородные уравнения.
- 4. Линейные уравнения.
- 5. Особые точки.

- 6. Интегрирующий множитель в уравнениях в полных дифференциалах.
- 7. Общий метод введения параметра.
- 8. Уравнения Лагранжа и Клеро.
- 9. Особые решения. Задача о траекториях.
- 10. Типы уравнений п-го порядка, разрешаемые в квадратурах.
- 11. Уравнения, допускающие понижение порядка.
- 12. Уравнения, левая часть которых является точной производной.
- 13. Неоднородные линейные уравнения. Сопряженное уравнение.
- 14. Существование производных по начальным значениям от решений системы.
- 15. Первые интегралы системы обыкновенных дифференциальных уравнений.
- 16. Симметричная форма системы дифференциальных уравнений.
- 17. Устойчивость по Ляпунову.
- 18. Фазовая плоскость
- 19. Теорема об устойчивости по первому приближению.
- 20. Приближенные методы интегрирования уравнений 1-ого порядка и систем уравнений.
- 21. Применение линейных дифференциальных уравнений в изучении колебательных явлений
 - 22. Простейшие типы точек покоя.
 - 23. Геометрический критерий устойчивости.

3) Требования к рейтинг-контролю с указанием баллов, распределенных между модулями и видами работы обучающихся.

Шкала оценивания за весь семестр: Максимальная возможная оценка за модуль составляет 30 баллов. Она складывается из оценки за контрольную работу (максимум 16 баллов), за задания для практических занятий (максимум 10 баллов), за самостоятельную работу студентов и выполнение письменных домашних заданий (4 балла). Итого семестр: 60 баллов.

VII. Материально-техническое обеспечение

Наименование специальных помещений	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения. Реквизиты подтверждающего документа
Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации Лекционная аудитория № 226 (170002 Тверская обл., г. Тверь, Садовый пер., д. 35)	1 Микшерный пульт Yamaha MG-124C 2 Аудиокомплект (мик. пульт, акуст. усилитель, акуст. система, радиосистема) 3 Интерактивная система SMART Board 660i4 4 Мультимедийный проектор Epson EB-4850WU с потолочным креплением 5 Телекоммуникационный шкаф ШТК-М-18.6.6-3AAA с полками 6 Телекоммуникационный шкаф ШТК-М-18.6.6-3AAA с полками 7 Экран настенный Lumien 8 Компьютер iRU Corp 510 15-2400/4096/500/G210-512/DVD-RW/W7S/монитор E-Machines E220HQVB 21,5" 9 Комплект учебной мебели на 110 посадочных мест 10 Меловая доска	Adobe Acrobat Reader DC – Russian бесплатно Adobe Media Player бесплатно Google Chrome - бесплатно Kaspersky Endpoint Security 10 для Windows - Акт на передачу прав №1842 30.11.2020 Microsoft Expression Studio 4 - бесплатно Microsoft Office Professional Plus 2019 - Акт на передачу прав №785 от 06.08.2021 г. Microsoft Windows 10 Enterprise - Акт на передачу прав №785 от 06.08.2021 г. Unreal Commander v3.57x64 - бесплатно Visual Studio Enterprise 2019 - Акт на передачу прав №785 от 06.08.2021 г. 7-Zip 19.00 (х64 edition) - бесплатно
Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, Лекционная аудитория № 218 (170002 Тверская обл., г. Тверь, Садовый пер., д. 35)	1. Комплект учебной мебели на 25 посадочных мест. 2. Экран настенный Screen Media 153х203 3. Переносной комплект мультимедийной техники (ноутбук, проектор). 4. Меловая доска	Місгоsoft Windows 10 Enterprise - Акт на передачу прав №785 от 06.08.2021 г. МЅ Office 365 pro plus - Акт на передачу прав №1051 от 05.08.2020 г. Астоват Reader DC - бесплатно Google Chrome – бесплатно

№	Обновленный	Описание внесенных	Реквизиты
п.п.	раздел рабочей	изменений	документа,
	программы		утвердившего
	дисциплины		изменения
1.			
2.			