Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Смирнов Сергей Министерство науки и высшего образования Российской Федерации

Должность: врио ректора

Дата подписания: 24.11.2023 15:10-54 БОУ ВО «Тверской государственный университет»

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель ООП:

С.М.Дудаков

шал 2022 г.

ПРИКЛАДНОЯ МАТЕМАТИКИ и кибернетики университез

Рабочая программа дисциплины (с аннотацией)

«Численные методы решения задач математической физики»

Направление подготовки

01.03.02 "Прикладная математика и информатика"

Направленность (профиль)

Системный анализ

Для студентов 4-го курса очной формы обучения

Составитель: Зингерман К.М., д.ф.-м.н., профессор

Тверь, 2022

I. Аннотация

1. Цель и задачи дисциплины

Цель освоения дисциплины «Численные методы решения задач математической физики» — подготовить студентов к разработке и программной реализации вычислительных алгоритмов решения краевых задач для дифференциальных уравнений в частных производных.

Задачами освоения дисциплины являются:

- приобретение студентами знаний основных понятий, методов и алгоритмов численного решения задач математической физики.
- приобретение студентами навыков численного решения типовых задач математической физики, навыков разработки и тестирования программного обеспечения для решения этих задач.

2. Место дисциплины в структуре ООП

Дисциплина «Численные методы решения задач математической физики» относится к Блоку 1 обязательной части, разделу «Математический». Для ее освоения требуется знание дисциплин "Математический анализ", "Алгебра и геометрия", "Уравнения математической физики", "Численные методы", навыки разработки программ. Освоение данной дисциплины необходимо для изучения дисциплин профиля подготовки и элективных дисциплин по профилю "Математическое моделирование", для подготовки выпускной работы бакалавра для студентов, обучающихся по профилю "Математическое моделирование".

3. Объем дисциплины: 3 зачетные единицы, 108 академических часов, в том числе:

контактная аудиторная работа: лекции 30 часов, в т.ч. практическая подготовка 5 часов, практические занятия 15 часов; в т.ч. практическая подготовка 5 часов:

контактная внеаудиторная работа: контроль самостоятельной работы __10__, в том числе РГР __10_ часов;

самостоятельная работа: 53 часа, в том числе контроль 36 часов.

4. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Планируемые	результаты	Планируемые	результаты	обучения	ПО
освоения	образовательной	дисциплине			
программы	(формируемые				
компетенции)					
ОПК-2 Способе	U UCHAHLZADATL	ОПК-2.1	Знает	существую	щие
	существующие	математически		и сист	емы
математические	·	программиров	ания		
	е методы и граммирования	ОПК-2.2 И	спользует	существую	щие
для разработки		математически	ие методы	и сист	емы
для разраоотки	и реализации	программиров	ания для	разработки	И

алгоритмов	решения	реализации	и алгоритмо	ов решения
прикладных задач		прикладных задач		
		ОПК-2.3 Разрабатывает и реализус		
		алгоритмы решения зад		ия задач
		профессиональной деятельности на основе		
		теоретических знаний		
		_		

- **5. Форма промежуточной аттестации и семестр прохождения:** РГР и экзамен (7 семестр).
 - 6. Язык преподавания русский.

II. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Учебная программа –	Всего	Ко	нтактна	ая раб	ота (час.)	Самостоя
наименование	(час.)	нас.) Лекции		Практическ		Контроль	тельная
разделов и тем				ие занятия		самостоя	работа, в
						тельной	том числе
		В	В	все	В т.ч.	работы (в	Контроль
		c	т.ч.	ГО	практ	том числе	(час.)
		e	прак		ическ	РГР)	
		Γ	тиче		ая		
		o	ская		подго		
			подг		товка		
			отов				
			ка				
Решение краевых							
задач для							
одномерного	16	3	1	2	1	1	10
уравнения	10)	1	2	1	1	10
теплопроводности							
методом сеток.							
Решение краевых							
задач для							
одномерного	9	2	1	1	1	5	1
уравнения		_	1	1	1		1
гиперболического							
типа методом сеток.							
Устойчивость							
разностных схем для	15	4	0	2	0	4	5
уравнений в частных	13	•					
производных.							

Решение краевых задач для двумерного уравнения теплопроводности методом конечных разностей.	16	4	1	2	1	0	10
Решение краевых задач для уравнений эллиптического типа методом конечных разностей.	24	6	1	3	1	0	15
Методы построения разностных схем для краевых задач математической физики.	11	5	0	2	0	0	4
Вариационноразностные и проекционноразностные методы.	17	6	1	3	1	0	8
ИТОГО	108	3 0	5	15	5	10	53

Ш. Образовательные технологии

Учебная программа –	Вид занятия	Образовательные технологии
наименование разделов		
и тем (в строгом		
соответствии с		
разделом II РПД)		
Рашанца краарыу залан	Лекции,	1. Изложение
Решение краевых задач	практические	теоретического
для одномерного	занятия	материала
уравнения		2. Решение задач
теплопроводности		3. Разработка программ
методом сеток.		для ЭВМ
Решение краевых задач	Лекции,	1. Изложение
_	практические	теоретического
для одномерного	занятия	материала
уравнения		2. Решение задач
гиперболического типа		3. Разработка программ
методом сеток.		для ЭВМ

Устойчивость	Лекции,	1. Изложение
разностных схем для	практические	теоретического
уравнений в частных	занятия	материала
производных.		2. Решение задач
Решение краевых задач	Лекции,	1. Изложение
для двумерного	практические	теоретического
уравнения	занятия	материала
теплопроводности		2. Решение задач
методом конечных		3. Разработка программ
разностей.		для ЭВМ
Решение краевых задач	Лекции,	1. Изложение
для уравнений	практические	теоретического
эллиптического типа	занятия	материала
методом конечных		2. Решение задач
разностей.		3. Разработка программ для ЭВМ
Методы построения	Лекции,	1. Изложение
разностных схем для	практические	теоретического
краевых задач	занятия	материала
математической		2. Решение задач
физики.		
Вариационно-	Лекции,	1. Изложение
разностные и	практические	теоретического
проекционно-	занятия	материала
разностные методы.		2. Решение задач

Преподавание учебной дисциплины строится на сочетании лекций, практических занятий и самостоятельной работы студентов, включающей разработку программы для ЭВМ (расчетно-графическую работу). В процессе освоения дисциплины используются следующие образовательные технологии, способы и методы формирования компетенций: традиционные лекции, практические занятия в диалоговом режиме. Дисциплина предусматривает выполнение контрольной работы.

IV. Оценочные материалы для проведения текущей и промежуточной аттестации

- ОПК-2 Способен использовать и адаптировать существующие математические методы и системы программирования для разработки и реализации алгоритмов решения прикладных задач
- ОПК-2.1 Знает существующие математические методы и системы программирования
- 1. Определить понятие устойчивости разностной схемы.
- 2. Определить понятие шаблона разностной схемы.

Способ проведения – устный.

Критерии оценивания:

Определение дано правильно и полно – 3 балла.

Определение дано с незначительными погрешностями – 2 балла.

Определение дано с существенными неточностями – 1 балл.

Определение не дано -0 баллов.

- 3. Построить чисто неявную разностную схему для уравнения теплопроводности. Построить шаблон, указать порядок аппроксимации.
- 4. Построить явную разностную схему для уравнения гиперболического типа. Построить шаблон, указать порядок аппроксимации.

Способ проведения – письменный.

Критерии оценивания:

Схема построена правильно – 3 балла.

Схема построена с незначительными погрешностями – 2 балла.

Схема построена с существенными неточностями – 1 балл.

Схема не построена -0 баллов.

- ОПК-2.2 Использует существующие математические методы и системы программирования для разработки и реализации алгоритмов решения прикладных задач.
- 1. Разработать алгоритм и программу для решения краевой задачи для одномерного уравнения теплопроводности методом конечных разностей с использованием явной схемы.
- 2. Разработать алгоритм и программу для решения краевой задачи для одномерного уравнения теплопроводности методом конечных разностей с использованием схемы Кранка-Николсон.

Способ проведения – письменный.

Критерии оценивания:

Алгоритм и программа разработаны правильно и программа полностью решает поставленную задачу — 3 балла.

Алгоритм и программа разработаны с незначительными погрешностями -2 балла.

Алгоритм и программа разработаны с существенными неточностями -1 балл.

Алгоритм и программа не разработаны -0 баллов.

ОПК-2.3 Разрабатывает и реализует алгоритмы решения задач профессиональной деятельности на основе теоретических знаний.

- 1. Выполнить отладку и тестирование программы для решения краевой задачи для одномерного уравнения теплопроводности методом конечных разностей с использованием явной схемы.
- 2. Выполнить отладку и тестирование программы для решения краевой задачи для одномерного уравнения теплопроводности методом конечных разностей с использованием схемы Кранка-Николсон.

Способ проведения – письменный. Критерии оценивания:

Отладка и тестирование программы выполнены правильно – 3 балла.

Отладка и тестирование программы выполнены с незначительными погрешностями – 2 балла.

Отладка и тестирование программы выполнены с существенными неточностями – 1 балл.

Отладка и тестирование программы не выполнены -0 баллов.

V. Учебно-методическое и информационное обеспечение дисциплины

1) Рекомендуемая литература

Основная литература:

- 1. Шевченко, А. С. Численные методы: учебное пособие / А. С. Шевченко. Москва: ИНФРА-М, 2022. 381 с. (Высшее образование: Бакалавриат). DOI 10.12737/996207. ISBN 978-5-16-014605-8. Текст: электронный. URL: https://znanium.com/catalog/product/996207
- 2.Демидович Б.П., Марон И.А. Основы вычислительной математики. М.: Лань, 2011. [Электронный ресурс]. Режим доступа: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=2025
- 3.Орешкова М.Н. Численные методы: теория и алгоритмы: учебное пособие / М.Н. Орешкова. Архангельск: САФУ, 2015. 120 с.: схем., табл. Библиогр. в кн. ISBN 978-5-261-01040-1; [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=436397

Дополнительная литература:

- 1. Новиков, А. И. Численные методы линейной алгебры: учебное пособие / А. И. Новиков. Рязань: РГРТУ, 2021. 50 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/168043 2.Фаддеев Д.К., Фаддеева В.Н. Вычислительные методы линейной алгебры. СПб: Лань, 2009. 733 с. —[Электронный ресурс]. Режим доступа: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=400
- 2) Программное обеспечение

Компьютерный класс факультета прикладной математики и кибернетики № 249

(170002, Тверская обл., г.Тверь, Садовый переулок, д.35)

	Государственный контракт на поставку		
Cadence SPB/OrCAD 16.6	лицензионных программных продуктов		
	103 - ГК/09 от 15.06.2009		
FidesysBundle 1.4.43 x64	Акт приема передачи по договору №02/12-		
•	13 от 16.12.2013		
Google Chrome	бесплатно		
JetBrains PyCharm Community	бесплатно		
Edition 4.5.3	occinatio		
Kaspersky Endpoint Security 10 для	Акт на передачу прав ПК545 от 16.12.2022		
Windows	1 1		
Lazarus 1.4.0	бесплатно		
Mathcad 15 M010	Акт предоставления прав ИС00000027 от		
Wathead 15 Wi010	16.09.2011		
MATLAB R2012b	Акт предоставления прав № Us000311 от		
	25.09.2012		
MiKTeX 2.9	бесплатно		
NetBeans IDE 8.0.2	бесплатно		
Notepad++	бесплатно		
OpenOffice	бесплатно		
Origin 8.1 Sr2	договор №13918/М41 от 24.09.2009 с ЗАО		
Origin 6.1 St2	«СофтЛайн Трейд»		
Python 3.4.3	бесплатно		
Python 3.5.1 (Anaconda3 2.5.0 64 bit)	t) бесплатно		
R for Windows 3.3.2	бесплатно		
STATGRAPHICS Centurion XVI.II	Акт приема-передачи № Tr024185 от		
STATORAPHICS Cellulion A VI.II	08.07.2010		
Многофункциональный			
редактор ONLYOFFICE бесплатное	бесплатно		
ПО			
OC Linux Ubuntu бесплатное ПО	бесплатно		

- 3) Современные профессиональные базы данных и информационные справочные системы
- 1. **ЭБС** «ZNANIUM.COM» www.znanium.com;
- 2. ЭБС «Университетская библиотека онлайн» https://biblioclub.ru/;
- 3. ЭБС «Лань» http://e.lanbook.com.
 - 4) Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины
 - Сайт поддержки учебного процесса по дисциплине: http://prog.tversu.ru
 - Виртуальная образовательная среда ТвГУ (http://moodle.tversu.ru)
 - Научная библиотека ТвГУ (http://library.tversu.ru)
 - Сайт ТвГУ (http://university.tversu.ru)

VI. Методические материалы для обучающихся по освоению дисциплины

Важной составляющей данного раздела РПД являются требования к рейтинг-контролю с указанием баллов, распределенных между модулями и видами работы обучающихся.

Максимальная сумма баллов по учебной дисциплине, заканчивающейся экзаменом, по итогам семестра составляет 60 баллов (30 баллов - 1-й модуль и 30 баллов - 2-й модуль).

Обучающемуся, набравшему 40–54 балла, при подведении итогов семестра (на последнем занятии по дисциплине) в рейтинговой ведомости учета успеваемости и зачетной книжке может быть выставлена оценка «удовлетворительно».

Обучающемуся, набравшему 55–57 баллов, при подведении итогов семестра (на последнем занятии по дисциплине) в графе рейтинговой ведомости учета успеваемости «Премиальные баллы» может быть добавлено 15 баллов и выставлена экзаменационная оценка «хорошо».

Обучающемуся, набравшему 58–60 баллов, при подведении итогов семестра (на последнем занятии по дисциплине) в графе рейтинговой ведомости учета успеваемости «Премиальные баллы» может быть добавлено 27 баллов и выставлена экзаменационная оценка «отлично». В каких-либо иных случаях добавление премиальных баллов не допускается.

Обучающийся, набравший до 39 баллов включительно, сдает экзамен.

Распределение баллов по модулям устанавливается преподавателем и может корректироваться.

Темы расчетно-графических работ

- 1. Решение краевой задачи для одномерного уравнения теплопроводности методом конечных разностей. Явная схема.
- 2. Решение краевой задачи для одномерного уравнения теплопроводности методом конечных разностей. Чисто неявная схема.
- 3. Решение краевой задачи для одномерного уравнения теплопроводности методом конечных разностей. Схема Кранка-Николсон.
- 4. Решение краевой задачи для одномерного уравнения теплопроводности методом конечных разностей. Схема «ромб».
- 5. Решение краевой задачи для уравнения колебаний струны методом конечных разностей. Явная схема.
- 6. Решение краевой задачи для двумерного уравнения теплопроводности методом конечных разностей. Явная схема.

- 7. Решение краевой задачи для двумерного уравнения теплопроводности методом конечных разностей. Локально-одномерная схема.
- 8. Решение краевой задачи для двумерного уравнения Лапласа методом установления.

Примеры задач для проведения текущего контроля.

Задача 1.

Решить краевую задачу для уравнения теплопроводности

$$\frac{\partial u}{\partial t} = \frac{1}{4} \frac{\partial^2 u}{\partial x^2}, \ 0 \le x \le 0.9, \ u(x,0) = 1 - x^3, \ \frac{\partial u}{\partial x}(0,t) = \frac{t}{t+1}, \ u(0.9,t) = 0.271$$

используя чисто неявную схему с шагом h=0.3 по x и с шагом $\tau=0.1$ по t при $0 \le t \le 0.1$.

Задача 2.

Решить краевую задачу для уравнения теплопроводности

$$\frac{\partial^2 u}{\partial t^2} = 2 \frac{\partial^2 u}{\partial x^2} - \frac{1}{t+2}, \ 0 \le x \le 2, \ u(x,0) = x^2(2-x), \ \frac{\partial u}{\partial t}(x,0) = x, \ u(0,t) = 0, \ \frac{\partial u}{\partial x}(2,t) = -\frac{1}{t+1},$$
 используя явную схему с шагом $h = 0.5$ по x и с шагом $\tau = 0.2$ по t при $0 \le t \le 0.4$

Наименование разделов и тем	Самостоятельная работа
Решение краевых задач для одномерного уравнения теплопроводности методом сеток.	[3] Глава X. §5. Задачи 1,7.
Решение краевых задач для одномерного уравнения гиперболического типа методом сеток.	[3] Глава X. §7. Задачи 1,5.
Устойчивость разностных схем для уравнений в частных производных.	[3] Глава11. Задача 18.
Решение краевых задач для уравнений эллиптического типа методом конечных разностей.	[3] Глава X. §3. Задачи За,б.
Методы построения разностных схем для краевых задач математической физики.	[6] Глава11. Задачи 2,6,36,37.

Список вопросов к экзамену

- 1. Явная двухслойная разностная схема для уравнения теплопроводности для случая, когда на границе задано значение искомой функции. Построение схемы, шаблон, порядок аппроксимации.
- 2. Явная двухслойная разностная схема для уравнения теплопроводности для случая, когда на границе задана производная искомой функции по пространственной координате. Построение схемы, шаблон, порядок аппроксимации.
- 3. Чисто неявная разностная схема для уравнения теплопроводности для случая, когда на границе задано значение искомой функции. Построение схемы, шаблон, порядок аппроксимации.
- 4. Чисто неявная разностная схема для уравнения теплопроводности для случая, когда на границе задана производная искомой функции по пространственной координате. Построение схемы, шаблон, порядок аппроксимации.
- 5. Двухслойная схема с весами для уравнения теплопроводности для случая, когда на границе задано значение искомой функции. Построение схемы, шаблон, порядок аппроксимации, алгоритм расчета. Схема Кранка-Николсон.
- 6. Схема "ромб" для уравнения теплопроводности для случая, когда на границе задано значение искомой функции. Построение схемы, шаблон, порядок аппроксимации, алгоритм расчета.
- 7. Повышение порядка аппроксимации граничных условий для случая, когда на границе
 - задана производная искомой функции по пространственной координате.
- 8. Явная разностная схема для уравнения гиперболического типа для случая, когда на границе задано значение искомой функции. Построение схемы, шаблон, порядок аппроксимации.
- 9. Повышение порядка аппроксимации начальных условий для уравнения гиперболического типа.
- 10. Общее понятие об устойчивости разностных схем. Основные определения и теоремы (без доказательств).
- 11. Устойчивость разностной схемы как следствие аппроксимации и сходимости (доказательство теоремы).
- 12. Необходимое спектральное условие устойчивости разностных схем (условие Неймана). Общий подход.

- 13. Исследование устойчивости явной двухслойной разностной схемы для уравнения теплопроводности с помощью спектрального условия.
- 14. Исследование устойчивости чисто неявной двухслойной разностной схемы для уравнения теплопроводности с помощью спектрального условия.
- 15. Доказательство неустойчивости явной трехслойной разностной схемы для уравнения теплопроводности с помощью спектрального условия.
- 16. Исследование устойчивости явной разностной схемы для уравнения гиперболического типа с помощью спектрального условия.
- 17. Явная разностная схема для двумерного уравнения теплопроводности.
- 18. Чисто неявная разностная схема для двумерного уравнения теплопроводности. Трудности ее реализации.
- 19. Построение схем расщепления для двумерного уравнения теплопроводности.
- 20. Разностная схема для двумерного уравнения теплопроводности в полярных координатах.
- 21. Разностная схема для двумерного уравнения эллиптического типа.
- 22. Методы аппроксимации граничных условий для двумерного уравнения эллиптического типа.
- 23. Метод установления решения краевых задач для уравнений эллиптического типа.
- 24. Применение методов Якоби и Зейделя к решению системы разностных уравнений, аппроксимирующих краевую задачу для двумерного уравнения Пуассона. Метод релаксации.
- 25. Определение собственных чисел и векторов матрицы системы разностных уравнений, аппроксимирующих краевую задачу для одномерного уравнения второго порядка.
- 26. Определение собственных чисел матрицы системы разностных уравнений, аппроксимирующих краевую задачу Дирихле для двумерного уравнения Пуассона.
- 27. Оценка числа итераций, необходимых для достижения заданной точности при применении метода итерации с параметром к решению системы разностных

уравнений, аппроксимирующих краевую задачу для двумерного уравнения Пуассона.

- 28. Составление разностных схем методом разностной аппроксимации.
- 29. Составление разностных схем методом неопределенных коэффициентов (на примере уравнения теплопроводности).
- 30. Составление разностных схем методом неопределенных коэффициентов (на примере треугольной сетки для двумерного уравнения Пуассона).
- 31. Составление разностных схем интегро-интерполяционным методом. (на примере уравнения теплопроводности).
- 32. Метод конечных элементов. Общий подход. Применение метода к решению краевых задач для обыкновенного дифференциального уравнения.
- 33. Применение метода конечных элементов к решению краевых задач для двумерного уравнения Пуассона.

Требования к рейтинг-контролю.

Расчет баллов за семестр в целом

- 1. Посещение занятий 23 балла (по 1 баллу за занятие);
- 2. Решение задач у доски на практических занятиях 12 баллов (по 2 балла за задачу, решенную у доски, но не более 6 баллов за первый модуль и не более 6 баллов за второй модуль);
- 3. Контрольная работа 10 баллов (2 задачи по 5 баллов);
- 4. Сдача расчетного задания на ЭВМ до 15 баллов, из них:
 - сдача задания не позже зачетной недели 10 баллов;
 - сдача задания не позже 1 декабря 3 балла дополнительно;
 - наличие качественного графического вывода результатов со шкалами 2 балла дополнительно.

Распределение баллов по модулям

Модуль 1.

- 1. Посещение занятий 12 баллов;
- 2. Решение задач на практических занятиях 6 баллов;
- 3. Контрольная работа 10 баллов.

Всего 28 баллов.

Модуль 2.

- 1. Посещение занятий 11 баллов;
- 2. Решение задач на практических занятиях -6 баллов;
- 3. Сдача расчетного задания на ЭВМ 15 баллов.

Примечания.

- 1. Для допуска к экзамену необходимо сдать индивидуальное задание на ЭВМ (расчетно-графическую работу).
- 2. Отчет по индивидуальному заданию (РГР) представляется в электронной форме и должен содержать: постановку задачи, описание метода и алгоритма расчета, текст программы и анализ результатов.

VII. Материально-техническое обеспечение

Для аудиторной работы.

Учебная аудитория № 7	Набор учебной мебели, меловая доска.
(170002, Тверская обл.,	
г.Тверь, Садовый	
переулок, д.35)	Набор учебной мебели,
Учебная аудитория № 20	экран,
(170002, Тверская обл.,	проектор.
г.Тверь, Садовый	
переулок, д.35)	

Для самостоятельной работы.

Помещение	для	Компьютер,
самостоятельной	работы	экран,
обучающихся:		проектор,
Компьютерный	класс	кондиционер.
факультета ПМиК		
№ 46		
170002, Тверская о	бл., г.Тверь,	
Садовый переулок, д	.35	

VIII. Сведения об обновлении рабочей программы дисциплины

№ п.п.	Обновленный раздел рабочей программы дисциплины	Описание внесенных изменений	Дата и протокол заседания кафедры, утвердившего изменения
1.	I. 3. Объем дисциплины	Выделение часов на практическую подготовку	От 29.10.2020 года, протокол № 3 ученого совета факультета

2.	II. Содержание	Выделение часов на	От 29.10.2020
	дисциплины,	практическую	года, протокол
	структурированное по	подготовку по темам	№ 3 ученого
	темам (разделам) с		совета
	указанием отведенного на		факультета
	них количества		
	академических часов и		
	видов учебных занятий		
3.	11. 2) Программное	Внесены изменения в	От 29.09.2022
	обеспечение	программное	года, протокол
		обеспечение	№ 2 ученого
			совета
			факультета
4.	13. Материально-	Внесены изменения в	От 29.09.2022
	техническое обеспечение	материально-	года, протокол
		техническое	№ 2 ученого
		обеспечение	совета
		аудиторий	факультета
5.	11. 2) Программное	Внесены изменения в	От 24.08.2023
	обеспечение	список ПО	года, протокол
			№ 1 ученого
			совета
			факультета
6.	V. 1) Рекомендуемая	Обновление ссылок	От 24.08.2023
	литература	на литературу	года, протокол
			№ 1 ученого
			совета
			факультета