Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Смирнов Сергей Николаевич должность: врио Раминистерство науки и высшего образования Российской Федерации

Дата подписания: 06.10.202 ФТЗБОУ ВО «Тверской государственный университет»

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель ООП

/ А.В. Язенин /

гра 2020 года

Рабочая программа дисциплины (с аннотацией)

АЛГЕБРА И ГЕОМЕТРИЯ

Направление подготовки 02.03.02 ФУНДАМЕНТАЛЬНАЯ ИНФОРМАТИКА И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

> Профиль подготовки Инженерия программного обеспечения

> > Для студентов 1-го курса Форма обучения – очная

> > > Составитель:

к.ф.-м.н. М.Н. Рыбаков

І. Аннотация

1. Цель и задачи дисциплины

Целью дисциплины является освоение основ фундаментальных знаний, позволяющих разобраться в математическом описании проблем, связанных с линейной алгеброй, решать стандартные задачи, давать интерпретацию полученным результатам.

Задачами дисциплины является знакомство слушателей с понятиями, теоремами, методами линейной алгебры, получение умений и навыков работы с ними.

2. Место дисциплины в структуре ООП

Дисциплина относится к разделу «Математический» обязательной части Блока 1.

Предварительные знания, необходимые для освоения дисциплины, — это знания, полученные при изучении школьной программы по алгебре и началам анализа, а также по геометрии.

Освоение данной дисциплины необходимо как предшествующее для следующих дисциплин: общая алгебра, дифференциальные и разностные уравнения, теория вероятностей и математическая статистика, численные методы, функциональный анализ.

3. Объем дисциплины: 10 зачетных единиц, 360 академических часов, в том числе:

контактная аудиторная работа: лекции 93 часа, практические занятия 78 часов;

контактная внеаудиторная работа: контроль самостоятельной работы 10, в том числе курсовая работа 10;

самостоятельная работа: 179 часов, в том числе контроль 68 часов.

4. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Планируемые результаты освоения	Планируемые результаты обучения по		
образовательной программы	дисциплине		
(формируемые компетенции)			
ОПК-1 Способен применять	ОПК-1.1 Знает основные положения и		
фундаментальные знания,	концепции математических и естественных		
полученные в области	наук		
математических и (или)	ОПК-1.2 Решает типовые математические и		
естественных наук, и использовать	естественнонаучные задачи		
их в профессиональной	ОПК-1.3 Работает со стандартными		
деятельности	математическими моделями при решении		
	профессиональных задач		

5. Форма промежуточной аттестации и семестр прохождения

Экзамен (1,2 семестры), курсовая работа (1 семестр).

6. Язык преподавания русский.

П. Содержание дисциплины, структурированное по темам (разделам) суказанием отведенного на них количества академических часов и видовучебных занятий

Учебная программа – наименование	Всего	Контактная работа (час.) Само			Самостоя-		
разделов и тем	(час.)	Лекции		O I		тельная работа, в том числе контроль	
		всего	в т.ч. практическая	всего	в т.ч. практическая подготовка	Контроль самостоятельной работы (в том числе курсовая	(час.)
Комплексные числа	24	6		6			12
Метод Гаусса	30	8		6			16
Определители	30	8		6			16
Арифметические пространства	30	8		6			16
Алгебра матриц	30	8		6			16
Делимость целых чисел и	30	8		6			16
многочленов							
Элементы общей алгебры	30	8		6			16
Линейные пространства	30	8		6			16
Линейные отображения	30	8		8			14
Евклидовы пространства	30	8		8			14
Квадратичные формы	30	8		8			14
Гиперповерхности второго порядка	26	7		6			13
Курсовая работа	10					10	
ИТОГО	360	93		78		10	179

Ш. Образовательные технологии

Учебная программа – наименование разделов и тем	Вид занятия	Образовательные технологии
Комплексные числа	Лекции, практические	1. Изложение теоретического
	занятия	материала
		2. Решение задач
Метод Гаусса	Лекции, практические	1. Изложение теоретического
	занятия	материала
		2. Решение задач
Определители	Лекции, практические	1. Изложение теоретического
	занятия	материала
		2. Решение задач
Арифметические	Лекции, практические	1. Изложение теоретического
пространства	занятия	материала
		2. Решение задач
Алгебра матриц	Лекции, практические	1. Изложение теоретического
	занятия	материала
		2. Решение задач
Делимость целых чисел и	Лекции, практические	1. Изложение теоретического
многочленов	занятия	материала
		2. Решение задач
Элементы общей алгебры	Лекции, практические	1. Изложение теоретического
	занятия	материала
		2. Решение задач
Линейные пространства	Лекции, практические	1. Изложение теоретического
	занятия	материала
		2. Решение задач
Линейные отображения	Лекции, практические	1. Изложение теоретического
	занятия	материала
		2. Решение задач
Евклидовы пространства	Лекции, практические	1. Изложение теоретического
	занятия	материала
		2. Решение задач

Квадратичные формы	Лекции, практические	1. Изложение теоретического		
	занятия	материала		
		2. Решение задач		
Гиперповерхности второго	Лекции, практические	1. Изложение теоретического		
порядка	занятия	материала		
		2. Решение задач		

Преподавание дисциплины строится на сочетании лекций, практических занятий и различных форм самостоятельной работы студентов. В процессе освоения дисциплины используются следующие образовательные технологии, способы и методы формирования компетенций: традиционные лекции, практические занятия в диалоговом режиме, выполнение индивидуальных заданий в рамках самостоятельной работы.

Дисциплина предусматривает выполнение контрольных работ, письменных домашних заданий.

IV. Оценочные материалы для проведения текущей и промежуточной аттестации

Для проведения текущей и промежуточной аттестации:

ОПК-1 Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности

ОПК-1.1 Знает основные положения и концепции математических и естественных наук

1) Вычислить определитель матрицы

$$A = \begin{pmatrix} -5 & 1 & 2 \\ 3 & -1 & 4 \\ -1 & 0 & 1 \end{pmatrix},$$

- а) по определению;
- б) путем приведения к треугольному виду;

в) путем разложения по элементам третьей строки.

2) Решить систему уравнений:
$$\begin{cases} 2x_1 + 3x_2 - x_3 = -6, \\ -x_1 + 2x_2 + x_3 = 5, \\ x_1 + 6x_2 + 3x_3 = -1. \end{cases}$$

- а) методом Гаусса;
- б) методом Крамера;
- в) матричным методом.

Способ проведения – письменный.

Критерии оценивания:

Задача решена полностью - 6 баллов;

Задача содержит неточности и незначительные ошибки - 4 балла;

Решение содержит грубые ошибки - 2 балла.

ОПК-1.2 Решает типовые математические и естественнонаучные задачи

3) Даны матрицы А,В,С и числа а и В.

Найти $\alpha \cdot A^2 + \beta \cdot BC$.

$$A = \begin{pmatrix} -5 & 1 & 2 \\ 3 & -1 & 4 \\ -1 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 4 & -2 & 6 \\ 0 & -1 & 1 & -3 \\ -2 & 5 & 2 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & -1 & 3 \\ 2 & 5 & 1 \\ -4 & 4 & 7 \\ 1 & 6 & 5 \end{pmatrix}, \quad \alpha = -2, \quad \beta = 3.$$

4) Найти ранг матрицы
$$A = \begin{pmatrix} 3 & 2 & -5 & 4 \\ 3 & -1 & 3 & -3 \\ 3 & 5 & -13 & 11 \end{pmatrix}$$

5) Решить систему уравнений Ax = 0. Найти общее и частное решение системы.

$$A = \begin{pmatrix} 3 & 2 & -5 & 4 \\ 3 & -1 & 3 & -3 \\ 3 & 5 & -13 & 11 \end{pmatrix}$$

6) Найти общие корни многочленов:

$$f(x) = 2x^4 + 2x^3 + x^2 - x - 1$$
 и $g(x) = 3x^4 + 2x^2 - x + 2$

7) Решить уравнение. Применить схему Горнера.

$$x^4$$
-7 x^3 +9 x^2 +8 x +16=0

8) Выяснить, является система векторов-столбцов матрицы А линейно зависимой. Выписать линейную комбинацию векторов.

$$A = \begin{pmatrix} 3 & 2 & -5 & 4 \\ 3 & -1 & 3 & -3 \\ 3 & 5 & -13 & 11 \end{pmatrix}$$

- 9) Даны векторы e_1, e_2, e_3, e_4 и a в стандартном базисе пространства R^4 . Требуется:
 - а) убедиться, что векторы e_1, e_2, e_3 и e_4 образуют базис пространства R^4 ;
 - б) найти разложение вектора a по этому базису.

$$e_1 = (1,0,-2,3), \quad e_2 = (0,1,3,2), \quad e_3 = (1,0,0,1), \quad e_4 = (2,3,12,2), \quad \grave{a} = (9,12,5,8).$$

- 10) Построить по данной системе векторов ортогональный и ортонормированный базисы $a_1 = (-3, 2, 4), a_2 = (2, -3, -1), a_3 = (-1, -1, 3)$
- 11) Найти базис суммы и пересечения линейных оболочек $A=< a_1,\, a_2,\, a_3>$ и $B=<\!b_1,\!b_2\,,\!b_3>$, где

$$a_1 = (3, -2, -4), a_2 = (-1, 3, 3), a_3 = (2, 1, -1), b_1 = (4, -5, -7), b_2 = (-1, 1, -1), b_3 = (3, 0, 0).$$

Способ проведения – письменный.

Критерии оценивания:

Задача решена полностью - 6 баллов;

Задача содержит неточности и незначительные ошибки - 4 балла;

Решение содержит грубые ошибки - 2 балла.

ОПК-1.3 Работает со стандартными математическими моделями при решении профессиональных задач

12) Исследовать систему уравнений AX=B на совместность. Определить при каких значениях параметра α система имеет решение. Найти решение системы

$$A = \begin{pmatrix} -4 & -2 & 6 \\ \alpha & 8 & 6 \\ 6 & 6 & -12 \end{pmatrix}, \quad B = \begin{pmatrix} -6 \\ 3 \\ -3 \end{pmatrix}$$

13) В базисе $g_1,g_2\in R^2$ оператор имеет матрицу Ag. Найти матрицу этого оператора в базисе $f_1,\,f_2{\in}R^2$. Сделать проверку для вектора $x_g=(1,-1)$.

$$g_1 = (4, 1), g_2 = (3, 1), f_1 = (1, 1), f_2 = (1, 4), A_g = \begin{pmatrix} 3 & -1 \\ 4 & -2 \end{pmatrix}.$$

14) Найти собственные значения и собственные векторы линейного

оператора
$$\phi_A: R^3 \longrightarrow R^3$$
 , $A_e = \begin{pmatrix} 4 & 2 & 3 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}$

15) Линейным преобразованием координат привести уравнение кривой второго порядка к каноническому виду и определить тип кривой. Построить кривую в исходных осях.

$$x^2 - 4xy + y^2 + 4x - 2y + 1 = 0$$

Способ проведения – письменный.

Критерии оценивания:

Задача решена полностью - 6 баллов;

Задача содержит неточности и незначительные ошибки - 4 балла;

V. Учебно-методическое и информационное обеспечение дисциплины

1) Рекомендуемая литература

а) Основная литература

- 1. Глухов, М.М. Алгебра [Электронный ресурс]: учеб. / М.М. Глухов, В.П. Елизаров, А.А. Нечаев. Электрон. дан. Санкт-Петербург: Лань, 2015. 608 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=67458
- 2. Алгебра и геометрия : учеб. пособие / Г.И. Шуман, О.А. Волгина, Н.Ю. Голодная. М. : РИОР : ИНФРА-М, 2019. (Высшее образование). 160 с. DOI: https://doi.org/10.12737/1708-1 Режим доступа: http://znanium.com/catalog/product/1002027
- 3. Огнева Э. Н., Математика: Раздел 1. Алгебра и геометрия: учебное пособие / Э. Н. Огнева; Министерство культуры Российской Федерации, ФГБОУ ВПО «Кемеровский государственный университет культуры и искусств», Кафедра технологии автоматизированной обработки информации. Кемерово: КемГУКИ, 2011. 227 с.: табл., схем.; [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=227759
- 4. Геворкян, П.С. Высшая математика: учебное пособие / П.С. Геворкян. Москва: Физматлит, 2007. Т. 2. Интегралы, ряды, ТФКП, дифференциальные уравнения. 270 с. ISBN 978-5-9221-0710-5; То же [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=82346

б) Дополнительная литература

- 1. Алгебра и геометрия. Сборник задач и решений с применением системы Maple: учеб. пособие / М.Н. Кирсанов, О.С. Кузнецова. М.: ИНФРА-М, 2016. 272 с. [Электронный ресурс]. Режим доступа: http://znanium.com/go.php?id=648409
- 2. Мальцев, И.А. Линейная алгебра [Электронный ресурс] : учеб. пособие Электрон. дан. Санкт-Петербург: Лань, 2010. 384 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=610
- 3. Фаддеев, Д.К. Лекции по алгебре: учебное пособие / Д.К. Фаддеев. 6-е изд., стер. Санкт-Петербург: Лань, 2019. 416 с. ISBN 978-5-8114-4106-8. Текст: электронный // Электронно-библиотечная система «Лань»: [сайт]. URL: https://e.lanbook.com/book/115199

2) Программное обеспечение

а) Лицензионное программное обеспечение

Компьютерный класс факультета прикладной математики и кибернетики № 46 (170002, Тверская обл., г.Тверь, Садовый переулок, д.35)

Adobe Acrobat Reader DC – Russian – бесплатное ПО;

Араche Tomcat 8.0.27 – бесплатное ПО;

Cadence SPB/OrCAD 16.6 - Государственный контракт на поставку лицензионных программных продуктов 103 - ГК/09 от 15.06.2009;

GlassFish Server Open Source Edition 4.1.1 – бесплатное ПО;

Google Chrome – бесплатное ПО;

Java SE Development Kit 8 Update 45 (64-bit) – бесплатное ПО;

JetBrains PyCharm Community Edition 4.5.3 – бесплатное ПО;

JetBrains PyCharm Edu 3.0 – бесплатное ПО;

Kaspersky Endpoint Security 10 для Windows – бесплатное ПО;

Lazarus 1.4.0 - бесплатное ПО;

MATLAB R2012b – Акт предоставления прав № Us000311 от 25.09.2012;

Mathcad $15\,\mathrm{M}010$ – Акт предоставления прав ИС00000027 от 16.09.2011;

Містоsoft Office профессиональный плюс 2013 – Акт приема-передачи № 369 от 21 июля 2017;

Microsoft SQL Server 2014 Express LocalDB - бесплатное ПО;

Microsoft Visio Professional 2013 - Акт приема-передачи № 369 от 21 июля 2017:

MS Visual Studio Ultimate 2013 с обновлением 4 - Акт предоставления Tr035055 No 19.06.2017; прав ΩТ 2.9 MiKTeX бесплатное ПО; SP2 MSXML 4.0 SDK ПО; Parser and - бесплатное NetBeans IDE 8.0.2- бесплатное ПО;

NetBeans IDE 8.2- бесплатное ПО;

Notepad++ - бесплатное ΠO ;

Oracle VM VirtualBox 5.0.2 - бесплатное ПО;

Origin 8.1 Sr2 – договор №13918/M4 от 24.09.2009 с ЗАО «СофтЛайн Трейд»:

Python 3.1 pygame-1.9.1 - бесплатное ΠO ;

Python 3.4 numpy-1.9.2 - бесплатное ПО;

Python 3.4.3 - бесплатное ПО;

Python 3.5.1 (Anaconda3 2.5.0 64-bit) - бесплатное ПО;

WCF RIA Services V1.0 SP2 - бесплатное ПО;

WinDjView 2.1 - бесплатное ПО;

MS Windows 10 Enterprise – Акт приема-передачи N 369 от 21 июля 2017.

- б) Свободно распространяемое программное обеспечение
- 3) Современные профессиональные базы данных и информационные справочные системы
- 1. 96C «ZNANIUM.COM» www.znanium.com;
- 2. ЭБС «Университетская библиотека онлайн» https://biblioclub.ru/;
- 3. ЭБС «Лань» http://e.lanbook.com.

Виртуальная образовательная среда ТвГУ (http://moodle.tversu.ru) Научная библиотека ТвГУ (http://library.tversu.ru)

4) Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Интернет-университет http://www.intuit.ru

VI. Методические материалы для обучающихся по освоению дисциплины

- **1.** Определители: Метод. указ. по курсу / Тверской гос. ун-т; Сост. Некрасов К.Г. Тверь, 2009. 20 с.
- **2.** Системы линейных уравнений: Метод. указания по курсу / Тверской гос. ун-т. Сост.: Некрасов К.Г., Тверь, 2011, 16 с.
- **3.** Арифметические пространства. Ранг матрицы: Метод. указ. по курсу / Тверской гос. ун-т; Сост. Некрасов К.Г. Тверь, 2009. 20 с.
- **4.** Операции с матрицами и теорема Гамильтона-Кэли: Метод. указ. по курсу / Тверской гос. ун-т; Сост. Некрасов К.Г. Тверь, 2009. 16 с.
- **5.** Линейные пространства: Метод. указания по курсу / Тверской гос. ун-т. Сост.: Некрасов К.Г., Тверь, 2007, 16 с.
- **6.** Линейные преобразования линейных пространств: Метод. указания по курсу / Тверской гос. ун-т. Сост.: Некрасов К.Г., Тверь, 2008, 20 с.
- 7. Евклидовы пространства: Метод. указания по курсу / Тверской гос. ун-т. Сост.: Некрасов К.Г., Тверь, 2010, 20 с.
- **8.** Квадратичные формы над полем действительных чисел: Метод. указания по курсу / Тверской гос. ун-т. Сост.: Некрасов К.Г., Тверь, 2008, 16 с.
- **9.** Жорданова форма матриц над полем комплексных чисел: Метод. указания по курсу / Тверской гос. ун-т. Сост.: Некрасов К.Г., Тверь, 2011, 20 с.

В итоге проводятся 3 контрольных мероприятия, распределение баллов между которыми составляет 30/30/40. Контрольные работы проводятся в письменной форме.

1. Текущий контроль успеваемости

Темы курсовых работ:

- Комплексные числа
- Элементарные преобразования систем линейных уравнений
- Группа подстановок

- Свойства определителя
- Методы вычисления определителя
- Арифметические пространства
- Операции с матрицами
- Обратная матрица
- Теорема о ранге матрицы
- Делимость в кольце многочленов

При выполнении курсовых работ обратить внимание на оформление работы (титульный лист, содержание, основное содержание работы, список литературы).

Типовые задания: Проскуряков И.В. Сборник задач по линейной алгебре. С.-Пб.: Лань, 2010.

2. Промежуточная аттестация

Контрольные вопросы и задания по учебной дисциплине.

- Понятие алгебраической операции. Примеры. Определение поля. Построение поля комплексных чисел.
- Поле комплексных чисел. Три формы представления комплексных чисел (в виде упорядоченной пары действительных чисел, алгебраическая форма, геометрическая форма). Связь этих представлений. Формула Муавра.
- Модуль комплексного числа. Свойства модуля.
- Корни п-ой степени из комплексного числа.
- Систем линейных уравнений. Решение системы линейных уравнений. Эквивалентные системы линейных уравнений. Теорема о методе Гаусса. Примеры.
- Количество различных перестановок порядка п. Транспозиция, инверсии. Связь между чётностью перестановок, полученных одна из другой транспозицией. Примеры.

- Подстановки п-ого порядка, их количество, чётность. Связь между чётностями подстановки и перестановки. Примеры.
- Определение определителя n-ого порядка, свойства определителя (транспонирование, перестановка двух строк). Примеры.
- Определение определителя n-ого порядка, свойства определителя (умножение строки на число, сумма двух определителей). Примеры.
- Определение определителя n-ого порядка, свойства определителя (определитель матрицы с нулевой строкой, определитель матрицы, в которой строка равна сумме двух строк, умноженных на коэффициенты). Примеры.
- Минор и алгебраическое дополнение. Теорема о разложении определителя по строке (столбцу). Теорема: сумма произведений элементов строки на алгебраические дополнения к элементам другой строки равна 0. Примеры.
- Определение определителя п-ого порядка. Теорема Крамера. Примеры.
- Определение арифметического линейного пространства. Линейная зависимость и линейная независимость системы векторов. Связь между линейной зависимостью и независимостью системы векторов и её подсистемы.
- Понятие подпространства арифметического пространства. Линейная оболочка и подпространство.
- Теорема о линейной зависимости линейной комбинации.
- Понятие базиса и ранга. Корректность понятия ранга. Единственность разложения по базису.
- Теорема: любую линейно независимую систему векторов можно дополнить до базиса.
- Эквивалентные системы векторов. Ранг эквивалентных систем. Элементарные преобразования системы векторов. темах векторов.
- Определение ранга матрицы и минора k-порядка. Теорема о ранге матрицы.
- Следствия из теоремы о ранге.

- Критерий равенства определителя нулю.
- Теорема о размерности подпространства решений системы однородных линейных уравнений.
- Теорема Кронекера-Капелли.
- Запись общего решения системы линейных уравнений.
- Определение фундаментальной системы решений системы линейных однородных уравнений. Теорема о количестве векторов в ФСР.
- Понятие кольца. Примеры. Кольцо матриц.
- Элементарные матрицы и элементарные преобразования.
- Обратная матрица. Существование обратной матрицы для элементарной матрицы.
- Определитель произведения матрицы и элементарной матрицы.
- Определитель произведения двух матриц.
- Критерий существования обратной матрицы.
- Нахождение обратной матрицы (два способа).
- Связь систем линейных уравнений и матричных уравнений.
- Делимость целых чисел. Теорема о делении с остатком.
- Наибольший общий делитель двух целых чисел. Алгоритм Евклида и его обоснование.
- Следствие из Алгоритма Евклида нахождения НОД двух целых чисел. Взаимная простота. Критерий взаимной простоты.
- Простые числа. Разложение в произведение простых чисел.
- Определение многочлена п-ой степени. Кольцо многочленов.
- Теорема о делении многочлена на многочлен с остатком.
- Определение делимости многочлена на многочлен. Определение наибольшего общего делителя. Алгоритм Евклида.
- Определение корня многочлена. Теорема Безу и следствие из неё. Схема Горнера.

- Основная теорема алгебры (без доказательства). Разложение многочлена в произведение неприводимых над полем комплексных чисел и над полем действительных чисел.
- Делимость целых чисел. Теорема о делении с остатком.
- Наибольший общий делитель двух целых чисел. Алгоритм Евклида и его обоснование.
- Следствие из Алгоритма Евклида нахождения НОД двух целых чисел. Взаимная простота. Критерий взаимной простоты.
- Простые числа. Разложение в произведение простых чисел.
- Определение многочлена n-ой степени. Кольцо многочленов.
- Теорема о делении многочлена на многочлен с остатком.
- Определение делимости многочлена на многочлен. Определение наибольшего общего делителя. Алгоритм Евклида.
- Определение корня многочлена. Теорема Безу и следствие из неё. Схема Горнера.
- Основная теорема алгебры (без доказательства). Разложение многочлена в произведение неприводимых над полем комплексных чисел и над полем действительных чисел.
- Линейные пространства. Примеры. Линейная зависимость и линейная независимость. Понятие базиса. Примеры. Размерность пространства. Единственность разложения по базису.
- Замена базиса. Матрица перехода.
- Утверждение: $T_{a \to e} \cdot T_{e \to a} = E$. Следствия.
- Изменение координат вектора при переходе к другому базису.
- Подпространства. Сумма и пересечение подпространств. Критерий того, что L₁ является подпространством L.
- Линейная оболочка. Утверждение: всякая линейная оболочка является подпространством и всякое подпространство является линейной оболочкой.

- Замкнутость множества подпространств данного пространства относительно суммы и пересечения.
- Связь между размерностями подпространств и размерностями их суммы и пересечения.
- Прямая сумма подпространств. Связь между размерностями подпространств и размерностью их прямой суммы.
- Изоморфизм линейных подпространств. Свойства изоморфизма линейных подпространств.
- Изоморфность подпространств. Утверждение: отношение изоморфности подпространств является эквивалентностью.
- Теорема об изоморфности линейных пространств одинаковой размерности.
- Понятие линейного отображения. Ядро и образ линейного отображения. Утверждение: ядро и образ являются линейными подпространствами.
- Ранг и дефект линейного отображения. Связь ранга и дефекта линейного отображения с размерностью пространства.
- Матрица линейного преобразования в базисе.
- Изменение координат вектора при действии на него линейного отображения.
- Изменение матрицы отображения при переходе к другому базису.
- Отношение подобия матриц. Утверждение: отношение подобия матриц является эквивалентностью. Теорема Жордана (без доказательства).
- Собственные числа и собственные векторы линейного отображения.
- Характеристический многочлен. Равенство характеристических многочленов подобных матриц.
- Теорема: число λ является собственным числом линейного преобразования тогда и только тогда, когда λ является корнем характеристического многочлена этого преобразования.
- Критерий подобия матрицы линейного преобразования диагональной матрице. Следствие.

- Евклидовы подпространства. Неравенство Коши–Буняковского.
 Следствие.
- Длина вектора. Теорема косинусов. Следствия.
- Ортогональность векторов. Процесс ортогонализации.
- Ортонормированный базис. Существование ортонормированного базиса евклидова пространства.
- Скалярное произведение в ортонормированном базисе.
- Изоморфизм евклидовых пространств. Теорема об изоморфности евклидовых пространств одинаковой размерности.
- Подпространства евклидова пространства. Ортогональное дополнение, свойства ортогонального дополнения.
- Группа ортогональных матриц.
- Ортогональные матрицы как матрицы перехода.
- Симметрические преобразования. Симметрические матрицы. Связь между симметрическими преобразованиями и симметрическими матрицами.
- Характеристические корни симметрического преобразования.
- Существование ортонормированного базиса, состоящего из собственных векторов симметрического преобразования. Следствие.
- Понятие квадратичной формы. Линейная замена букв квадратичной формы. Изменение матрицы формы при замене букв. Следствие.
- Приведение квадратичной формы к главным осям.
- Метод Лагранжа приведения квадратичной формы к каноническому виду.
- Нормальный вид квадратичной формы. Приводимость действительной квадратичной формы к нормальному виду.
- Закон инерции квадратичных форм.
- Положительно определённые квадратичные формы. Утверждение: действительная квадратичная форма является положительно определённой тогда и только тогда, когда на ненулевых наборах она принимает положительные значения.

- Критерий Сильвестра.
- Классификация линий второго порядка в двумерном евклидовом пространстве.
- Классификация гиперповерхностей второго порядка в евклидовом пространстве.

3. Рубежный контроль

Методические указания.

Для полноценного усвоения курса студенту необходимо овладеть основными понятиями дисциплины, знать определения, уметь приводить их точные формулировки, приводить примеры объектов, удовлетворяющих этим определениям, а также примеры объектов, не удовлетворяющих им. Кроме того, необходимо знать факты, связанные с изучаемыми понятиями. Требуется знать связи между понятиями, уметь устанавливать соотношения между классами объектов, описываемых различными понятиями. Студент должен освоить доказательства основных утверждений и фактов, изучаемых в рамках дисциплины. Часть из этих доказательств целесообразно обсуждать на практических занятиях, например, в форме опроса или докладов.

Практическая и самостоятельная работа включает в себя следующие составляющие.

- 1. Изучение теоретического материала.
- 2. Самостоятельное изучение методов решения задач по данному разделу с использованием рекомендованной литературы.
- 3. Решение задач на лабораторных и практических занятиях.
- 4. Выполнение контрольных работ.

Для полноценного усвоения курса студенту необходимо овладеть основными понятиями дисциплины, знать определения, уметь приводить их точные формулировки, приводить примеры объектов, удовлетворяющих этим определениям, а также примеры объектов, не удовлетворяющих им. Кроме того, необходимо знать факты, связанные с изучаемыми понятиями.

Требуется знать связи между понятиями, уметь устанавливать соотношения между классами объектов, описываемых различными понятиями. Студент должен освоить доказательства основных утверждений и фактов, изучаемых в рамках дисциплины. Часть из этих доказательств целесообразно обсуждать на практических занятиях, например, в форме опроса или докладов.

Практическая и самостоятельная работа включает в себя следующие составляющие.

- 1. Изучение теоретического материала.
- 2. Самостоятельное изучение методов решения задач по данному разделу с использованием рекомендованной литературы.
- 3. Решение задач на лабораторных и практических занятиях.

Выполнение контрольных работ.

VII. Материально-техническое обеспечение

Для аудиторной работы.

Учебная аудитория № 212 (170002, Тверская обл., г.Тверь, Садовый переулок, д.35)	Набор учебной мебели, меловая доска, мультимедийный комплекс "I - Lerner .ru" в составе: проектор Epson EB -575 Wi, маркерная доска, панель управления Epson ELPCBO2, запасная лампа, запасной фильтр для проектора.
Учебная аудитория № 20 (170002, Тверская обл., г.Тверь, Садовый	Набор учебной мебели, меловая доска.
переулок, д.35)	
Учебная аудитория № 206 (170002, Тверская обл., г.Тверь, Садовый переулок, д.35)	Набор учебной мебели, меловая доска, настенный экран Draper Luma MW 213*213, мультимедийный проектор ACER P5270 DLP, EYJ5501001729001465910.

Для самостоятельной работы.

Помещение для	Персональные ЭВМ (компьютер RAMEC STORM C2D
самостоятельной работы	4600/160Gb/DVD-RW+Монитор LG TFT 17" L1753S-SF
обучающихся:	silver – 24 шт.), мультимедийный проектор BenQ MP 724 с
Компьютерный класс	потолочным креплением и экран 1105, кондиционер
факультета прикладной	General Climate – 2 шт., коммутатор D-Link
математики и	10/100/1000mbps 16-potr DGS-1016D, коммутатор D-Link

кибернетики № 4б	10/100/1000mbps 16-potr DGS-1016D- 2 шт.
(170002, Тверская обл.,	
г.Тверь, Садовый	
переулок, д.35)	

VIII. Сведения об обновлении рабочей программы дисциплины

№п.п.	Обновленный раздел рабочей	Описание внесенных	Реквизиты документа,		
	программы дисциплины	изменений	утвердившего		
			изменения		
1.	3. Объем дисциплины	Выделение часов на практическую	От 29.10.2020 года, протокол № 3 ученого		
		подготовку	совета факультета		
2.	II. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий	Выделение часов на практическую подготовку по темам	От 29.10.2020 года, протокол № 3 ученого совета факультета		
3.					