Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Смирнов Сергей Министерство науки и высшего образования Российской Федерации

Должность: врио ректора

Дата подписания: 05.09.2022 08:23 ФТБОУ ВО «Тверской государственный университет»

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель ООП

А.В. Солнышкин

«28»

кнои

2022 г.

Рабочая программа дисциплины (с аннотацией)

Физика конденсированных сред

Направление подготовки 03.04.02 Физика

профиль

Физика конденсированного состояния вещества

Для студентов 1 курса, очной формы обучения

Составитель: д.ф.-м.н., доцент Солнышкин А.В.

І. Аннотация

1. Цель и задачи дисциплины

Целью дисциплины является формирование у студентов углубленных теоретических знаний в области физики конденсированного состояния, а именно освоить ряд вопросов, излагаемых в различных разделах физики твердого тела, (кристаллографии, рентгенографии, физики металлов, оптическая спектроскопии) с общих позиций теории групп.

Задачами освоения дисциплины являются:

формирование у студентов общего представления о симметрии кристаллической решетки с точки зрения аксиом теории групп;

изучение эффектов, связанных с колебаниями кристаллической решетки и движением электронов в кристаллическом поле и основанных на рассмотрении теории групп;

подготовка студентов к изучению специальных обзоров и оригинальных работ по отдельным вопросам данной области знания.

2. Место дисциплины в структуре ООП

Дисциплина «Физика конденсированных сред» относится к Блоку 1. Дисциплины обязательной части учебного плана.

Содержательно она способствует углублению и расширению знаний для дальнейшего изучения физических свойств и структуры конденсированных сред. Учебная дисциплина непосредственно связана с дисциплинами «Динамика решетки сегнетоэлектрические явления», «Нелинейные диэлектрики», «Специальный физический практикум по диэлектрическим материалам». А также необходима при прохождения практик выпускной И выполнения квалификационной работы.

Уровень начальной подготовки для успешного освоения дисциплины «Физика конденсированных сред»: обучающийся должен иметь представление о молекулярно-кинетической теории вещества, использующей статистические законы, и о термодинамике, изучающей макроскопических свойств тел и явлений

природы; знать основные законы механики, молекулярной физики, электродинамики и оптики, а также владеть математическим аппаратом векторной алгебры, математического анализа, теории групп и тензорного исчисления.

3. Объем дисциплины: $\underline{6}$ зачетных единиц, $\underline{216}$ академических часов, в том числе:

контактная аудиторная работа: лекции 45 часов, практические занятия 15 часов:

самостоятельная работа: 156 часов, в том числе контроль 27 часов.

4. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Планируемые результаты обучения по дисииплине

Планируемые результаты освоения

Плинируемые результиты освоения	Плинируемые результиты обучения по бисциплине
образовательной программы	
(формируемые компетенции)	
ОПК-1. Способен применять	ОПК-1.1. Анализирует поставленную научно-
фундаментальные знания в области	исследовательскую задачу, формулирует
физики для решения научно-	конечную цель и составляет развернутый план ее
исследовательских задач.	решения используя фундаментальные знания
	физики;
	ОПК-1.2. Выбирает оптимальные и актуальные
	методы исследования для решения поставленных
	научно-исследовательских задач;
	ОПК-1.3. Планирует экспериментальную часть
	научно-исследовательской работы с учетом
	имеющейся базы измерительных приборов и
	устройств.
ОПК-2. Способен в сфере своей	ОПК-2.1. Планирует проведение научно-
профессиональной деятельности	исследовательской работы по заданной теме;
организовывать самостоятельную и	ОПК-2.2. Определяет порядок проведения научно-
коллективную научно-исследовательскую	исследовательской работы по предложенной теме
деятельность для поиска, выработки и	
принятия решений в области физики.	TYC 1 1 D
ПК-1. Осуществляет проектирование и	ПК-1.1. Реализует лабораторный технологический
разработку продукции в части,	процесс на технологическом оборудовании
касающейся разработки объемных	материаловедческого подразделения в
нанокерамик, соединений и композитов на	соответствии с разработанными рекомендациями и
их основе, а также выбора расходных и	получает партии пробных образцов новых
вспомогательных материалов.	материалов;
	ПК-1.2. Организует процесс измерения и
	испытания полученных образцов на контрольном,

измерительном и испытательном оборудовании.
1

5. Форма промежуточной аттестации и семестр прохождения

Экзамен в 1 семестре.

6. Язык преподавания: русский.